[Stabilité du défaut vortex dans la théorie Landau–de Gennes pour les cristaux liquides]
Nous étudions la solution à symétrie radiale associée au défaut de type vortex dans la théorie de Landau–de Gennes pour les cristaux liquides. Nous montrons des résultats dʼexistence, dʼunicité et de stabilité de cette solution.
We analyze the radially symmetric solution corresponding to the vortex defect (the so-called melting hedgehog) in the Landau–de Gennes theory for nematic liquid crystals. We prove the existence, uniqueness and stability results of the melting hedgehog.
Accepté le :
Publié le :
Radu Ignat 1 ; Luc Nguyen 2 ; Valeriy Slastikov 3 ; Arghir Zarnescu 4
@article{CRMATH_2013__351_13-14_533_0, author = {Radu Ignat and Luc Nguyen and Valeriy Slastikov and Arghir Zarnescu}, title = {Stability of the vortex defect in the {Landau{\textendash}de} {Gennes} theory for nematic liquid crystals}, journal = {Comptes Rendus. Math\'ematique}, pages = {533--537}, publisher = {Elsevier}, volume = {351}, number = {13-14}, year = {2013}, doi = {10.1016/j.crma.2013.07.012}, language = {en}, }
TY - JOUR AU - Radu Ignat AU - Luc Nguyen AU - Valeriy Slastikov AU - Arghir Zarnescu TI - Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals JO - Comptes Rendus. Mathématique PY - 2013 SP - 533 EP - 537 VL - 351 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2013.07.012 LA - en ID - CRMATH_2013__351_13-14_533_0 ER -
%0 Journal Article %A Radu Ignat %A Luc Nguyen %A Valeriy Slastikov %A Arghir Zarnescu %T Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals %J Comptes Rendus. Mathématique %D 2013 %P 533-537 %V 351 %N 13-14 %I Elsevier %R 10.1016/j.crma.2013.07.012 %G en %F CRMATH_2013__351_13-14_533_0
Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu. Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 533-537. doi : 10.1016/j.crma.2013.07.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.012/
[1] Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 493-535
[2] Ginzburg–Landau Vortices, Birkhäuser Boston, 1994
[3] Instability of radial hedgehog configurations in nematic liquid crystals under Landau–de Gennes free-energy models, Phys. Rev. E, Volume 59 (1999), pp. 563-567
[4] Symmetric solutions of the Ginzburg–Landau equations in all dimensions, Int. Math. Res. Not. IMRN, Volume 16 (1997), pp. 807-816
[5] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Uniqueness result for an ODE related to a generalized Ginzburg–Landau model for liquid crystals, in preparation.
[6] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, On stability of the radially symmetric solution in a Landau–de Gennes model for liquid crystals, in preparation.
[7] Some properties of the nematic radial hedgehog in the Landau–de Gennes theory, J. Math. Anal. Appl., Volume 397 (2013), pp. 586-594
[8] Landau–de Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 227-280
[9] Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional, J. Eur. Math. Soc. (JEMS), Volume 12 (2010), pp. 1069-1096
[10] On the stability of radial solutions of the Ginzburg–Landau equation, J. Funct. Anal., Volume 130 (1995), pp. 334-344
- Minimality of Vortex Solutions to Ginzburg–Landau Type Systems for Gradient Fields in the Unit Ball in Dimension
, Archive for Rational Mechanics and Analysis, Volume 249 (2025) no. 1 | DOI:10.1007/s00205-025-02082-3 - Well-Posedness and Asymptotic Stability of Solutions for the Incompressible Toner–Tu Model, SIAM Journal on Mathematical Analysis, Volume 57 (2025) no. 1, p. 637 | DOI:10.1137/23m1599756
- Pattern formation in Landau–de Gennes theory, Journal of Functional Analysis, Volume 285 (2023) no. 1, p. 109923 | DOI:10.1016/j.jfa.2023.109923
- Mathematical problems of nematic liquid crystals: between dynamical and stationary problems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 379 (2021) no. 2201, p. 20200432 | DOI:10.1098/rsta.2020.0432
- Biaxial escape in nematics at low temperature, Journal of Functional Analysis, Volume 272 (2017) no. 10, p. 3987 | DOI:10.1016/j.jfa.2017.01.012
- Instability of point defects in a two-dimensional nematic liquid crystal model, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 33 (2016) no. 4, p. 1131 | DOI:10.1016/j.anihpc.2015.03.007
- Stability of point defects of degree
± 1 2 in a two-dimensional nematic liquid crystal model, Calculus of Variations and Partial Differential Equations, Volume 55 (2016) no. 5 | DOI:10.1007/s00526-016-1051-2 - Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals, Journal of Nonlinear Science, Volume 26 (2016) no. 1, p. 121 | DOI:10.1007/s00332-015-9271-8
- Liquid crystal defects in the Landau–de Gennes theory in two dimensions — Beyond the one-constant approximation, Mathematical Models and Methods in Applied Sciences, Volume 26 (2016) no. 14, p. 2769 | DOI:10.1142/s0218202516500664
- A non-traditional view on the modeling of nematic disclination dynamics, Quarterly of Applied Mathematics, Volume 75 (2016) no. 2, p. 309 | DOI:10.1090/qam/1441
- Uniaxial symmetry in nematic liquid crystals, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 5, p. 1125 | DOI:10.1016/j.anihpc.2014.05.006
- Biaxiality in the asymptotic analysis of a 2D Landau−de Gennes model for liquid crystals, ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 1, p. 101 | DOI:10.1051/cocv/2014025
- Symmetry in nonlinear PDEs: Some open problems, Journal of Fixed Point Theory and Applications, Volume 15 (2014) no. 2, p. 299 | DOI:10.1007/s11784-014-0181-4
- Chiral skyrmions in the plane, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 470 (2014) no. 2172, p. 20140394 | DOI:10.1098/rspa.2014.0394
- Uniqueness Results for an ODE Related to a Generalized Ginzburg–Landau Model for Liquid Crystals, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 5, p. 3390 | DOI:10.1137/130948598
Cité par 15 documents. Sources : Crossref
Commentaires - Politique