Comptes Rendus
Partial Differential Equations/Calculus of Variations
Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals
[Stabilité du défaut vortex dans la théorie Landau–de Gennes pour les cristaux liquides]
Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 533-537.

Nous étudions la solution à symétrie radiale associée au défaut de type vortex dans la théorie de Landau–de Gennes pour les cristaux liquides. Nous montrons des résultats dʼexistence, dʼunicité et de stabilité de cette solution.

We analyze the radially symmetric solution corresponding to the vortex defect (the so-called melting hedgehog) in the Landau–de Gennes theory for nematic liquid crystals. We prove the existence, uniqueness and stability results of the melting hedgehog.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2013.07.012

Radu Ignat 1 ; Luc Nguyen 2 ; Valeriy Slastikov 3 ; Arghir Zarnescu 4

1 Laboratoire de mathématiques, Université ParisSud (Paris 11), bât. 425, 91405 Orsay cedex, France
2 Mathematics Department, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544, USA
3 School of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom
4 University of Sussex, Department of Mathematics, Pevensey 2, Falmer, BN1 9QH, United Kingdom
@article{CRMATH_2013__351_13-14_533_0,
     author = {Radu Ignat and Luc Nguyen and Valeriy Slastikov and Arghir Zarnescu},
     title = {Stability of the vortex defect in the {Landau{\textendash}de} {Gennes} theory for nematic liquid crystals},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {533--537},
     publisher = {Elsevier},
     volume = {351},
     number = {13-14},
     year = {2013},
     doi = {10.1016/j.crma.2013.07.012},
     language = {en},
}
TY  - JOUR
AU  - Radu Ignat
AU  - Luc Nguyen
AU  - Valeriy Slastikov
AU  - Arghir Zarnescu
TI  - Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals
JO  - Comptes Rendus. Mathématique
PY  - 2013
SP  - 533
EP  - 537
VL  - 351
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2013.07.012
LA  - en
ID  - CRMATH_2013__351_13-14_533_0
ER  - 
%0 Journal Article
%A Radu Ignat
%A Luc Nguyen
%A Valeriy Slastikov
%A Arghir Zarnescu
%T Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals
%J Comptes Rendus. Mathématique
%D 2013
%P 533-537
%V 351
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2013.07.012
%G en
%F CRMATH_2013__351_13-14_533_0
Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu. Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 533-537. doi : 10.1016/j.crma.2013.07.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.012/

[1] J.M. Ball; A. Zarnescu Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 493-535

[2] F. Bethuel; H. Brezis; F. Helein Ginzburg–Landau Vortices, Birkhäuser Boston, 1994

[3] E.C. Gartland; S. Mkaddem Instability of radial hedgehog configurations in nematic liquid crystals under Landau–de Gennes free-energy models, Phys. Rev. E, Volume 59 (1999), pp. 563-567

[4] S. Gustafson Symmetric solutions of the Ginzburg–Landau equations in all dimensions, Int. Math. Res. Not. IMRN, Volume 16 (1997), pp. 807-816

[5] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Uniqueness result for an ODE related to a generalized Ginzburg–Landau model for liquid crystals, in preparation.

[6] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, On stability of the radially symmetric solution in a Landau–de Gennes model for liquid crystals, in preparation.

[7] X. Lamy Some properties of the nematic radial hedgehog in the Landau–de Gennes theory, J. Math. Anal. Appl., Volume 397 (2013), pp. 586-594

[8] A. Majumdar; A. Zarnescu Landau–de Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 227-280

[9] V. Millot; A. Pisante Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional, J. Eur. Math. Soc. (JEMS), Volume 12 (2010), pp. 1069-1096

[10] P. Mironescu On the stability of radial solutions of the Ginzburg–Landau equation, J. Funct. Anal., Volume 130 (1995), pp. 334-344

  • Radu Ignat; Mickael Nahon; Luc Nguyen Minimality of Vortex Solutions to Ginzburg–Landau Type Systems for Gradient Fields in the Unit Ball in Dimension N4, Archive for Rational Mechanics and Analysis, Volume 249 (2025) no. 1 | DOI:10.1007/s00205-025-02082-3
  • Hantaek Bae; Young-Pil Choi; Kyungkeun Kang Well-Posedness and Asymptotic Stability of Solutions for the Incompressible Toner–Tu Model, SIAM Journal on Mathematical Analysis, Volume 57 (2025) no. 1, p. 637 | DOI:10.1137/23m1599756
  • Ho–Man Tai; Yong Yu Pattern formation in Landau–de Gennes theory, Journal of Functional Analysis, Volume 285 (2023) no. 1, p. 109923 | DOI:10.1016/j.jfa.2023.109923
  • Arghir Zarnescu Mathematical problems of nematic liquid crystals: between dynamical and stationary problems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 379 (2021) no. 2201, p. 20200432 | DOI:10.1098/rsta.2020.0432
  • Andres Contreras; Xavier Lamy Biaxial escape in nematics at low temperature, Journal of Functional Analysis, Volume 272 (2017) no. 10, p. 3987 | DOI:10.1016/j.jfa.2017.01.012
  • Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu Instability of point defects in a two-dimensional nematic liquid crystal model, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 33 (2016) no. 4, p. 1131 | DOI:10.1016/j.anihpc.2015.03.007
  • Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu Stability of point defects of degree ±12 ± 1 2 in a two-dimensional nematic liquid crystal model, Calculus of Variations and Partial Differential Equations, Volume 55 (2016) no. 5 | DOI:10.1007/s00526-016-1051-2
  • G. Di Fratta; J. M. Robbins; V. Slastikov; A. Zarnescu Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals, Journal of Nonlinear Science, Volume 26 (2016) no. 1, p. 121 | DOI:10.1007/s00332-015-9271-8
  • Georgy Kitavtsev; J. M. Robbins; Valeriy Slastikov; Arghir Zarnescu Liquid crystal defects in the Landau–de Gennes theory in two dimensions — Beyond the one-constant approximation, Mathematical Models and Methods in Applied Sciences, Volume 26 (2016) no. 14, p. 2769 | DOI:10.1142/s0218202516500664
  • Chiqun Zhang; Xiaohan Zhang; Amit Acharya; Dmitry Golovaty; Noel Walkington A non-traditional view on the modeling of nematic disclination dynamics, Quarterly of Applied Mathematics, Volume 75 (2016) no. 2, p. 309 | DOI:10.1090/qam/1441
  • Xavier Lamy Uniaxial symmetry in nematic liquid crystals, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 32 (2015) no. 5, p. 1125 | DOI:10.1016/j.anihpc.2014.05.006
  • Giacomo Canevari Biaxiality in the asymptotic analysis of a 2D Landau−de Gennes model for liquid crystals, ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 1, p. 101 | DOI:10.1051/cocv/2014025
  • Adriano Pisante Symmetry in nonlinear PDEs: Some open problems, Journal of Fixed Point Theory and Applications, Volume 15 (2014) no. 2, p. 299 | DOI:10.1007/s11784-014-0181-4
  • Christof Melcher Chiral skyrmions in the plane, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 470 (2014) no. 2172, p. 20140394 | DOI:10.1098/rspa.2014.0394
  • Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu Uniqueness Results for an ODE Related to a Generalized Ginzburg–Landau Model for Liquid Crystals, SIAM Journal on Mathematical Analysis, Volume 46 (2014) no. 5, p. 3390 | DOI:10.1137/130948598

Cité par 15 documents. Sources : Crossref

Commentaires - Politique