[Stabilité du défaut vortex dans la théorie Landau–de Gennes pour les cristaux liquides]
Nous étudions la solution à symétrie radiale associée au défaut de type vortex dans la théorie de Landau–de Gennes pour les cristaux liquides. Nous montrons des résultats dʼexistence, dʼunicité et de stabilité de cette solution.
We analyze the radially symmetric solution corresponding to the vortex defect (the so-called melting hedgehog) in the Landau–de Gennes theory for nematic liquid crystals. We prove the existence, uniqueness and stability results of the melting hedgehog.
Accepté le :
Publié le :
Radu Ignat 1 ; Luc Nguyen 2 ; Valeriy Slastikov 3 ; Arghir Zarnescu 4
@article{CRMATH_2013__351_13-14_533_0, author = {Radu Ignat and Luc Nguyen and Valeriy Slastikov and Arghir Zarnescu}, title = {Stability of the vortex defect in the {Landau{\textendash}de} {Gennes} theory for nematic liquid crystals}, journal = {Comptes Rendus. Math\'ematique}, pages = {533--537}, publisher = {Elsevier}, volume = {351}, number = {13-14}, year = {2013}, doi = {10.1016/j.crma.2013.07.012}, language = {en}, }
TY - JOUR AU - Radu Ignat AU - Luc Nguyen AU - Valeriy Slastikov AU - Arghir Zarnescu TI - Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals JO - Comptes Rendus. Mathématique PY - 2013 SP - 533 EP - 537 VL - 351 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2013.07.012 LA - en ID - CRMATH_2013__351_13-14_533_0 ER -
%0 Journal Article %A Radu Ignat %A Luc Nguyen %A Valeriy Slastikov %A Arghir Zarnescu %T Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals %J Comptes Rendus. Mathématique %D 2013 %P 533-537 %V 351 %N 13-14 %I Elsevier %R 10.1016/j.crma.2013.07.012 %G en %F CRMATH_2013__351_13-14_533_0
Radu Ignat; Luc Nguyen; Valeriy Slastikov; Arghir Zarnescu. Stability of the vortex defect in the Landau–de Gennes theory for nematic liquid crystals. Comptes Rendus. Mathématique, Volume 351 (2013) no. 13-14, pp. 533-537. doi : 10.1016/j.crma.2013.07.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.07.012/
[1] Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 493-535
[2] Ginzburg–Landau Vortices, Birkhäuser Boston, 1994
[3] Instability of radial hedgehog configurations in nematic liquid crystals under Landau–de Gennes free-energy models, Phys. Rev. E, Volume 59 (1999), pp. 563-567
[4] Symmetric solutions of the Ginzburg–Landau equations in all dimensions, Int. Math. Res. Not. IMRN, Volume 16 (1997), pp. 807-816
[5] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Uniqueness result for an ODE related to a generalized Ginzburg–Landau model for liquid crystals, in preparation.
[6] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, On stability of the radially symmetric solution in a Landau–de Gennes model for liquid crystals, in preparation.
[7] Some properties of the nematic radial hedgehog in the Landau–de Gennes theory, J. Math. Anal. Appl., Volume 397 (2013), pp. 586-594
[8] Landau–de Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 227-280
[9] Symmetry of local minimizers for the three-dimensional Ginzburg–Landau functional, J. Eur. Math. Soc. (JEMS), Volume 12 (2010), pp. 1069-1096
[10] On the stability of radial solutions of the Ginzburg–Landau equation, J. Funct. Anal., Volume 130 (1995), pp. 334-344
Cité par Sources :
Commentaires - Politique