[Stabilité faible pour le système de Navier–Stokes incompressible]
We study a weak stability problem for the three-dimensional Navier–Stokes system: if a sequence
On étudie la stabilité faible pour le système de Navier–Stokes : si une suite de données de Cauchy
Accepté le :
Publié le :
Hajer Bahouri 1 ; Jean-Yves Chemin 2 ; Isabelle Gallagher 3
@article{CRMATH_2014__352_4_305_0, author = {Hajer Bahouri and Jean-Yves Chemin and Isabelle Gallagher}, title = {Stability by rescaled weak convergence for the {Navier{\textendash}Stokes} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {305--310}, publisher = {Elsevier}, volume = {352}, number = {4}, year = {2014}, doi = {10.1016/j.crma.2014.02.007}, language = {en}, }
TY - JOUR AU - Hajer Bahouri AU - Jean-Yves Chemin AU - Isabelle Gallagher TI - Stability by rescaled weak convergence for the Navier–Stokes equations JO - Comptes Rendus. Mathématique PY - 2014 SP - 305 EP - 310 VL - 352 IS - 4 PB - Elsevier DO - 10.1016/j.crma.2014.02.007 LA - en ID - CRMATH_2014__352_4_305_0 ER -
Hajer Bahouri; Jean-Yves Chemin; Isabelle Gallagher. Stability by rescaled weak convergence for the Navier–Stokes equations. Comptes Rendus. Mathématique, Volume 352 (2014) no. 4, pp. 305-310. doi : 10.1016/j.crma.2014.02.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2014.02.007/
[1] On the stability of global solutions to Navier–Stokes equations in the space, J. Math. Pures Appl., Volume 83 (2004), pp. 673-697
[2] Stability by rescaled weak convergence for the Navier–Stokes equations | arXiv
[3] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343, Springer, Berlin, Heidelberg, 2011
[4] A general wavelet-based profile decomposition in the critical embedding of function spaces, Confluentes Math., Volume 3 (2011), pp. 1-25
[5] On the stability in weak topology of the set of global solutions to the Navier–Stokes equations, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 569-629
[6] High-frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999), pp. 131-175
[7] Large, global solutions to the Navier–Stokes equations, slowly varying in one direction, Trans. Amer. Math. Soc., Volume 362 (2010) no. 6, pp. 2859-2873
[8] Sums of large global solutions to the incompressible Navier–Stokes equations, J. Reine Angew. Math., Volume 681 (2013), pp. 65-82
[9] The role of spectral anisotropy in the resolution of the three-dimensional Navier–Stokes equations | arXiv
[10] Asymptotics and stability for global solutions to the Navier–Stokes equations, Ann. Inst. Fourier, Volume 53 (2003), pp. 1387-1424
[11] Description du défaut de compacité de l'injection de Sobolev, ESAIM Control Optim. Calc. Var., Volume 3 (1998), pp. 213-233
[12] Resolution of the Navier–Stokes equations in anisotropic spaces, Rev. Mat. Iberoam., Volume 15 (1999) no. 1, pp. 1-36
[13] Analysis of the lack of compactness in the critical Sobolev embeddings, J. Funct. Anal., Volume 161 (1999), pp. 384-396
[14] Recent Developments in the Navier–Stokes Problem, Research Notes in Mathematics, vol. 43, Chapman and Hall/CRC Press, 2002
[15] Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., Volume 63 (1933), pp. 193-248
[16] Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl., Volume 12 (1933), pp. 1-82
[17] Équation anisotrope de Navier–Stokes dans des espaces critiques, Rev. Mat. Iberoam., Volume 21 (2005) no. 1, pp. 179-235
Cité par Sources :
Commentaires - Politique