[Borne pour le cinquième coefficient des fonctions étoilées]
Nous appuyant sur une majoration de la valeur absolue d'un polynôme en les coefficients de fonctions de partie réelle positive, nous obtenons une majoration précise de la valeur absolue du cinquième coefficient d'une fonction analytique f normalisée, satisfaisant
For two different choices of φ, the sharp bound for the fifth coefficient of a normalized analytic function f satisfying
Accepté le :
Publié le :
V. Ravichandran 1 ; Shelly Verma 1
@article{CRMATH_2015__353_6_505_0, author = {V. Ravichandran and Shelly Verma}, title = {Bound for the fifth coefficient of certain starlike functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {505--510}, publisher = {Elsevier}, volume = {353}, number = {6}, year = {2015}, doi = {10.1016/j.crma.2015.03.003}, language = {en}, }
V. Ravichandran; Shelly Verma. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus. Mathématique, Volume 353 (2015) no. 6, pp. 505-510. doi : 10.1016/j.crma.2015.03.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.03.003/
[1] Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (2), Volume 26 (2003) no. 1, pp. 63-71
[2] Coefficient bounds for p-valent functions, Appl. Math. Comput., Volume 187 (2007) no. 1, pp. 35-46
[3] Hermitian forms in function theory, Trans. Amer. Math. Soc., Volume 286 (1984) no. 2, pp. 675-688
[4] Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., Volume 85 (1982) no. 2, pp. 225-230
[5] The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc., Volume 21 (1969), pp. 545-552
[6] A unified treatment of some special classes of univalent functions, Tianjin, 1992 (Conf. Proc. Lecture Notes Anal., I), Int. Press, Cambridge, MA, USA (1992), pp. 157-169
[7] Uniformly convex functions. II, Ann. Pol. Math., Volume 58 (1993) no. 3, pp. 275-285
[8] A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Int. J. Math., Volume 25 (2014) no. 9 (17 pp)
[9] Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J., Volume 49 (2009) no. 2, pp. 349-353
Cité par Sources :
Commentaires - Politique