Comptes Rendus
Partial differential equations
Long-time existence for semilinear Klein–Gordon equations on compact manifolds for a generic mass
[Stabilité en grands temps pour des équations semi-linéaires de Klein–Gordon sur des variétés compactes avec une masse générique]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 831-835.

L'objet de cette note est de résumer les résultats de stabilité en temps grand pour les petites solutions de l'équation semi-linéaire de Klein–Gordon sur une variété riemannienne compacte sans bord. Nous expliquerons aussi comment obtenir facilement un résultat qui semble nouveau en utilisant un résultat de Zhang sur l'oscillateur harmonique et des estimées de Delort et Szeftel : nous améliorons le temps d'existence sur des variétés compactes dont les valeurs propres sont des entiers (comme des produits finis de sphères).

The purpose of this note is to recap the results of long-time existence of small solutions for the semilinear Klein–Gordon equations on a boundaryless compact Riemannian manifold. Using a result by Zhang on the harmonic oscillator and Delort–Szeftel's estimates, we will explain how we can easily obtain a result that seems to be new: we improve the local existence time on compact manifolds whose eigenvalues are integers (like finite product of spheres).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.012

Rafik Imekraz 1

1 Université de Bordeaux, Institut de mathématiques de Bordeaux, UMR 5251, 351, cours de la Libération, 33405 Talence cedex, France
@article{CRMATH_2015__353_9_831_0,
     author = {Rafik Imekraz},
     title = {Long-time existence for semilinear {Klein{\textendash}Gordon} equations on compact manifolds for a generic mass},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {831--835},
     publisher = {Elsevier},
     volume = {353},
     number = {9},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.012},
     language = {en},
}
TY  - JOUR
AU  - Rafik Imekraz
TI  - Long-time existence for semilinear Klein–Gordon equations on compact manifolds for a generic mass
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 831
EP  - 835
VL  - 353
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2015.06.012
LA  - en
ID  - CRMATH_2015__353_9_831_0
ER  - 
%0 Journal Article
%A Rafik Imekraz
%T Long-time existence for semilinear Klein–Gordon equations on compact manifolds for a generic mass
%J Comptes Rendus. Mathématique
%D 2015
%P 831-835
%V 353
%N 9
%I Elsevier
%R 10.1016/j.crma.2015.06.012
%G en
%F CRMATH_2015__353_9_831_0
Rafik Imekraz. Long-time existence for semilinear Klein–Gordon equations on compact manifolds for a generic mass. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 831-835. doi : 10.1016/j.crma.2015.06.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.012/

[1] D. Bambusi Birkhoff normal form for some nonlinear PDEs, Commun. Math. Phys., Volume 234 (2003), pp. 253-285

[2] D. Bambusi A Birkhoff normal form theorem for some semilinear PDEs, Hamiltonian Dynamical Systems and Applications, Springer, 2007, pp. 213-247

[3] D. Bambusi; J.-M. Delort; B. Grébert; J. Szeftel Almost global existence for Hamiltonian semilinear Klein–Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., Volume 60 (2007) no. 11, pp. 1665-1690

[4] D. Bambusi; B. Grébert Birkhoff normal form for PDEs with tame modulus, Duke Math. J., Volume 135 (2006), pp. 507-567

[5] J. Bourgain Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., Volume 6 (1996) no. 2, pp. 201-230

[6] J.-M. Delort On long time existence for small solutions of semi-linear Klein–Gordon equations on the torus, J. Anal. Math., Volume 107 (2009) no. 1, pp. 161-194

[7] J.-M. Delort; J. Szeftel Long-time existence for small data nonlinear Klein–Gordon equations on tori and spheres, Int. Math. Res. Not., Volume 37 (2004), pp. 1897-1966

[8] J.-M. Delort; J. Szeftel Long-time existence for semi-linear Klein–Gordon equations with small Cauchy data on Zoll manifolds, Amer. J. Math., Volume 128 (2006), pp. 1187-1218

[9] D. Fang; Q. Zhang Long-time existence for semi-linear Klein–Gordon equations on tori, J. Differ. Equ., Volume 249 (2010) no. 1, pp. 151-179

[10] B. Grébert Birkhoff normal form and Hamiltonian PDEs, Partial Differential Equations and Applications, Sémin. Congr., vol. 15, Soc. Math. France, Paris, 2007, pp. 1-46

[11] B. Grébert; R. Imekraz; E. Paturel Normal forms for semilinear quantum harmonic oscillators, Commun. Math. Phys., Volume 291 (2009) no. 3, pp. 763-798

[12] R. Imekraz Normal form for semi-linear Klein–Gordon equations with superquadratic oscillator, Monatshefte Math. (2015) | DOI

[13] Q. Zhang Long-time existence for semi-linear Klein–Gordon equations with quadratic potential, Commun. Partial Differ. Equ., Volume 35 (2010) no. 4, pp. 630-668

Cité par Sources :

Commentaires - Politique