Comptes Rendus
Partial differential equations
A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle
[Une remarque sur le caractère globalement bien posé de l'équation de Schrödinger non linéaire avec dérivée sur le cercle]
Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 837-841.

On considère dans cette note l'équation de Schrödinger avec dérivée sur le cercle. En particulier, en adaptant l'argument récent de Wu au cas periodique, on prouve que cette équation est globalement bien posée dans H1(T), pourvu que la masse soit inférieure à 4π. En outre, ce seuil pour la masse est indépendant des périodes spatiales.

In this note, we consider the derivative nonlinear Schrödinger equation on the circle. In particular, by adapting Wu's recent argument to the periodic setting, we prove its global well-posedness in H1(T), provided that the mass is less than 4π. Moreover, this mass threshold is independent of spatial periods.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.015

Razvan Mosincat 1, 2 ; Tadahiro Oh 1, 2

1 School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
2 The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building, The King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
@article{CRMATH_2015__353_9_837_0,
     author = {Razvan Mosincat and Tadahiro Oh},
     title = {A remark on global well-posedness of the derivative nonlinear {Schr\"odinger} equation on the circle},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {837--841},
     publisher = {Elsevier},
     volume = {353},
     number = {9},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.015},
     language = {en},
}
TY  - JOUR
AU  - Razvan Mosincat
AU  - Tadahiro Oh
TI  - A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 837
EP  - 841
VL  - 353
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crma.2015.06.015
LA  - en
ID  - CRMATH_2015__353_9_837_0
ER  - 
%0 Journal Article
%A Razvan Mosincat
%A Tadahiro Oh
%T A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle
%J Comptes Rendus. Mathématique
%D 2015
%P 837-841
%V 353
%N 9
%I Elsevier
%R 10.1016/j.crma.2015.06.015
%G en
%F CRMATH_2015__353_9_837_0
Razvan Mosincat; Tadahiro Oh. A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 837-841. doi : 10.1016/j.crma.2015.06.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.015/

[1] M. Agueh Sharp Gagliardo–Nirenberg inequalities and mass transport theory, J. Dyn. Differ. Equ., Volume 18 (2006) no. 4, pp. 1069-1093

[2] J. Colliander; M. Keel; G. Staffilani; H. Takaoka; T. Tao Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 33 (2001) no. 3, pp. 649-669

[3] J. Colliander; M. Keel; G. Staffilani; H. Takaoka; T. Tao A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 34 (2002) no. 1, pp. 64-86

[4] N. Hayashi; T. Ozawa Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., Volume 25 (1994) no. 6, pp. 1488-1503

[5] S. Herr On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not. (2006) (Art. ID 96763, 33 p)

[6] J. Lebowitz; H. Rose; E. Speer Statistical mechanics of the nonlinear Schrödinger equation, J. Stat. Phys., Volume 50 (1988) no. 3–4, pp. 657-687

[7] A. Nahmod; T. Oh; L. Rey-Bellet; G. Staffilani Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., Volume 14 (2012), pp. 1275-1330

[8] S.B. Tan Blow-up solutions for mixed nonlinear Schrödinger equations, Acta Math. Sin. Engl. Ser., Volume 20 (2004) no. 1, pp. 115-124

[9] M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1982–1983) no. 4, pp. 567-576

[10] Y.Y.S. Win Global well-posedness of the derivative nonlinear Schrödinger equations on T, Funkc. Ekvacioj, Volume 53 (2010) no. 1, pp. 51-88

[11] Y. Wu Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space, Anal. PDE, Volume 6 (2013) no. 8, pp. 1989-2002

[12] Y. Wu Global well-posedness on the derivative nonlinear Schrödinger equation revisited | arXiv

  • Minjie Shan; Mingjuan Chen; Yufeng Lu; Jing Wang Low regularity conservation laws for Fokas-Lenells equation and Camassa-Holm equation, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2024-0014
  • Hajer Bahouri; Galina Perelman Global Well-Posedness for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition, International Mathematics Research Notices, Volume 2024 (2024) no. 24, p. 14479 | DOI:10.1093/imrn/rnae243
  • Bradley Isom; Dionyssios Mantzavinos; Atanas Stefanov Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrödinger equation, Mathematische Annalen, Volume 388 (2024) no. 3, p. 2289 | DOI:10.1007/s00208-022-02492-8
  • Rowan Killip; Maria Ntekoume; Monica Vişan On the well-posedness problem for the derivative nonlinear Schrödinger equation, Analysis PDE, Volume 16 (2023) no. 5, p. 1245 | DOI:10.2140/apde.2023.16.1245
  • Friedrich Klaus; Robert Schippa A Priori Estimates for the Derivative Nonlinear Schrödinger Equation, Funkcialaj Ekvacioj, Volume 65 (2022) no. 3, p. 329 | DOI:10.1619/fesi.65.329
  • Yu Deng; Andrea R. Nahmod; Haitian Yue Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrödinger Equation, Communications in Mathematical Physics, Volume 384 (2021) no. 2, p. 1061 | DOI:10.1007/s00220-020-03898-8
  • Robert Schippa On a priori estimates and existence of periodic solutions to the modified Benjamin-Ono equation below H1/2(T), Journal of Differential Equations, Volume 299 (2021), p. 111 | DOI:10.1016/j.jde.2021.07.019
  • Ruobing Bai; Yifei Wu; Jun Xue Optimal small data scattering for the generalized derivative nonlinear Schrödinger equations, Journal of Differential Equations, Volume 269 (2020) no. 9, p. 6422 | DOI:10.1016/j.jde.2020.05.001
  • Cui Ning Instability of solitary wave solutions for the nonlinear Schrödinger equation of derivative type in degenerate case, Nonlinear Analysis, Volume 192 (2020), p. 111665 | DOI:10.1016/j.na.2019.111665
  • Masayuki Hayashi Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrödinger equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 36 (2019) no. 5, p. 1331 | DOI:10.1016/j.anihpc.2018.12.003
  • Giuseppe Genovese; Renato Lucà; Daniele Valeri Invariant measures for the periodic derivative nonlinear Schrödinger equation, Mathematische Annalen, Volume 374 (2019) no. 3-4, p. 1075 | DOI:10.1007/s00208-018-1754-0
  • Stefan Le Coz; Yifei Wu Stability of multisolitons for the derivative nonlinear Schrödinger equation, International Mathematics Research Notices (2017) | DOI:10.1093/imrn/rnx013
  • Razvan Mosincat Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition inH12, Journal of Differential Equations, Volume 263 (2017) no. 8, p. 4658 | DOI:10.1016/j.jde.2017.05.026
  • Mamoru Okamoto; Hiroyuki Hirayama Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 12, p. 6943 | DOI:10.3934/dcds.2016102
  • Giuseppe Genovese; Renato Lucà; Daniele Valeri Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation, Selecta Mathematica, Volume 22 (2016) no. 3, p. 1663 | DOI:10.1007/s00029-016-0225-2

Cité par 15 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: