[Une remarque sur le caractère globalement bien posé de l'équation de Schrödinger non linéaire avec dérivée sur le cercle]
On considère dans cette note l'équation de Schrödinger avec dérivée sur le cercle. En particulier, en adaptant l'argument récent de Wu au cas periodique, on prouve que cette équation est globalement bien posée dans
In this note, we consider the derivative nonlinear Schrödinger equation on the circle. In particular, by adapting Wu's recent argument to the periodic setting, we prove its global well-posedness in
Accepté le :
Publié le :
Razvan Mosincat 1, 2 ; Tadahiro Oh 1, 2
@article{CRMATH_2015__353_9_837_0, author = {Razvan Mosincat and Tadahiro Oh}, title = {A remark on global well-posedness of the derivative nonlinear {Schr\"odinger} equation on the circle}, journal = {Comptes Rendus. Math\'ematique}, pages = {837--841}, publisher = {Elsevier}, volume = {353}, number = {9}, year = {2015}, doi = {10.1016/j.crma.2015.06.015}, language = {en}, }
TY - JOUR AU - Razvan Mosincat AU - Tadahiro Oh TI - A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle JO - Comptes Rendus. Mathématique PY - 2015 SP - 837 EP - 841 VL - 353 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2015.06.015 LA - en ID - CRMATH_2015__353_9_837_0 ER -
Razvan Mosincat; Tadahiro Oh. A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 837-841. doi : 10.1016/j.crma.2015.06.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.015/
[1] Sharp Gagliardo–Nirenberg inequalities and mass transport theory, J. Dyn. Differ. Equ., Volume 18 (2006) no. 4, pp. 1069-1093
[2] Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 33 (2001) no. 3, pp. 649-669
[3] A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 34 (2002) no. 1, pp. 64-86
[4] Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., Volume 25 (1994) no. 6, pp. 1488-1503
[5] On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not. (2006) (Art. ID 96763, 33 p)
[6] Statistical mechanics of the nonlinear Schrödinger equation, J. Stat. Phys., Volume 50 (1988) no. 3–4, pp. 657-687
[7] Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., Volume 14 (2012), pp. 1275-1330
[8] Blow-up solutions for mixed nonlinear Schrödinger equations, Acta Math. Sin. Engl. Ser., Volume 20 (2004) no. 1, pp. 115-124
[9] Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1982–1983) no. 4, pp. 567-576
[10] Global well-posedness of the derivative nonlinear Schrödinger equations on T, Funkc. Ekvacioj, Volume 53 (2010) no. 1, pp. 51-88
[11] Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space, Anal. PDE, Volume 6 (2013) no. 8, pp. 1989-2002
[12] Global well-posedness on the derivative nonlinear Schrödinger equation revisited | arXiv
- Low regularity conservation laws for Fokas-Lenells equation and Camassa-Holm equation, Advances in Nonlinear Analysis, Volume 13 (2024) no. 1 | DOI:10.1515/anona-2024-0014
- Global Well-Posedness for the Derivative Nonlinear Schrödinger Equation with Periodic Boundary Condition, International Mathematics Research Notices, Volume 2024 (2024) no. 24, p. 14479 | DOI:10.1093/imrn/rnae243
- Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrödinger equation, Mathematische Annalen, Volume 388 (2024) no. 3, p. 2289 | DOI:10.1007/s00208-022-02492-8
- On the well-posedness problem for the derivative nonlinear Schrödinger equation, Analysis PDE, Volume 16 (2023) no. 5, p. 1245 | DOI:10.2140/apde.2023.16.1245
- A Priori Estimates for the Derivative Nonlinear Schrödinger Equation, Funkcialaj Ekvacioj, Volume 65 (2022) no. 3, p. 329 | DOI:10.1619/fesi.65.329
- Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrödinger Equation, Communications in Mathematical Physics, Volume 384 (2021) no. 2, p. 1061 | DOI:10.1007/s00220-020-03898-8
- On a priori estimates and existence of periodic solutions to the modified Benjamin-Ono equation below H1/2(T), Journal of Differential Equations, Volume 299 (2021), p. 111 | DOI:10.1016/j.jde.2021.07.019
- Optimal small data scattering for the generalized derivative nonlinear Schrödinger equations, Journal of Differential Equations, Volume 269 (2020) no. 9, p. 6422 | DOI:10.1016/j.jde.2020.05.001
- Instability of solitary wave solutions for the nonlinear Schrödinger equation of derivative type in degenerate case, Nonlinear Analysis, Volume 192 (2020), p. 111665 | DOI:10.1016/j.na.2019.111665
- Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrödinger equation, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 36 (2019) no. 5, p. 1331 | DOI:10.1016/j.anihpc.2018.12.003
- Invariant measures for the periodic derivative nonlinear Schrödinger equation, Mathematische Annalen, Volume 374 (2019) no. 3-4, p. 1075 | DOI:10.1007/s00208-018-1754-0
- Stability of multisolitons for the derivative nonlinear Schrödinger equation, International Mathematics Research Notices (2017) | DOI:10.1093/imrn/rnx013
- Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition inH12, Journal of Differential Equations, Volume 263 (2017) no. 8, p. 4658 | DOI:10.1016/j.jde.2017.05.026
- Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 12, p. 6943 | DOI:10.3934/dcds.2016102
- Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation, Selecta Mathematica, Volume 22 (2016) no. 3, p. 1663 | DOI:10.1007/s00029-016-0225-2
Cité par 15 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier