[Une remarque sur le caractère globalement bien posé de l'équation de Schrödinger non linéaire avec dérivée sur le cercle]
On considère dans cette note l'équation de Schrödinger avec dérivée sur le cercle. En particulier, en adaptant l'argument récent de Wu au cas periodique, on prouve que cette équation est globalement bien posée dans , pourvu que la masse soit inférieure à 4π. En outre, ce seuil pour la masse est indépendant des périodes spatiales.
In this note, we consider the derivative nonlinear Schrödinger equation on the circle. In particular, by adapting Wu's recent argument to the periodic setting, we prove its global well-posedness in , provided that the mass is less than 4π. Moreover, this mass threshold is independent of spatial periods.
Accepté le :
Publié le :
Razvan Mosincat 1, 2 ; Tadahiro Oh 1, 2
@article{CRMATH_2015__353_9_837_0, author = {Razvan Mosincat and Tadahiro Oh}, title = {A remark on global well-posedness of the derivative nonlinear {Schr\"odinger} equation on the circle}, journal = {Comptes Rendus. Math\'ematique}, pages = {837--841}, publisher = {Elsevier}, volume = {353}, number = {9}, year = {2015}, doi = {10.1016/j.crma.2015.06.015}, language = {en}, }
TY - JOUR AU - Razvan Mosincat AU - Tadahiro Oh TI - A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle JO - Comptes Rendus. Mathématique PY - 2015 SP - 837 EP - 841 VL - 353 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2015.06.015 LA - en ID - CRMATH_2015__353_9_837_0 ER -
Razvan Mosincat; Tadahiro Oh. A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 837-841. doi : 10.1016/j.crma.2015.06.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.06.015/
[1] Sharp Gagliardo–Nirenberg inequalities and mass transport theory, J. Dyn. Differ. Equ., Volume 18 (2006) no. 4, pp. 1069-1093
[2] Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 33 (2001) no. 3, pp. 649-669
[3] A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 34 (2002) no. 1, pp. 64-86
[4] Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal., Volume 25 (1994) no. 6, pp. 1488-1503
[5] On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not. (2006) (Art. ID 96763, 33 p)
[6] Statistical mechanics of the nonlinear Schrödinger equation, J. Stat. Phys., Volume 50 (1988) no. 3–4, pp. 657-687
[7] Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc., Volume 14 (2012), pp. 1275-1330
[8] Blow-up solutions for mixed nonlinear Schrödinger equations, Acta Math. Sin. Engl. Ser., Volume 20 (2004) no. 1, pp. 115-124
[9] Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1982–1983) no. 4, pp. 567-576
[10] Global well-posedness of the derivative nonlinear Schrödinger equations on T, Funkc. Ekvacioj, Volume 53 (2010) no. 1, pp. 51-88
[11] Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space, Anal. PDE, Volume 6 (2013) no. 8, pp. 1989-2002
[12] Global well-posedness on the derivative nonlinear Schrödinger equation revisited | arXiv
Cité par Sources :
Commentaires - Politique