[Sur la régularité des solutions de l'équation de Poisson]
Dans cette note, nous annonçons de nouveaux résultats de régularité pour des solutions distributionelles localement intégrables à l'équation de Poisson. Cela comprend, par exemple, les solutions standard obtenues par convolution avec la solution fondamentale. En particulier, nos résultats montrent qu'il n'y a aucune différence qualitative de régularité entre ces solutions dans le plan et celles en dimensions supérieures.
In this note, we announce new regularity results for some locally integrable distributional solutions to Poisson's equation. This includes, for example, the standard solutions obtained by convolution with the fundamental solution. In particular, our results show that there is no qualitative difference in the regularity of these solutions in the plane and in higher dimensions.
Accepté le :
Publié le :
Rahul Garg 1 ; Daniel Spector 1, 2
@article{CRMATH_2015__353_9_819_0, author = {Rahul Garg and Daniel Spector}, title = {On the regularity of solutions to {Poisson's} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {819--823}, publisher = {Elsevier}, volume = {353}, number = {9}, year = {2015}, doi = {10.1016/j.crma.2015.07.001}, language = {en}, }
Rahul Garg; Daniel Spector. On the regularity of solutions to Poisson's equation. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 819-823. doi : 10.1016/j.crma.2015.07.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.07.001/
[1] On the equation and application to control of phases, J. Amer. Math. Soc., Volume 16 (2003), pp. 393-426
[2] A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Partial Differ. Equ., Volume 5 (1980), pp. 773-789
[3] spaces of several variables, Acta Math., Volume 129 (1972), pp. 137-193
[4] R. Garg, D. Spector, On the role of Riesz potentials in Poisson's equation and Sobolev embeddings, Indiana U. Math J. (to appear).
[5] Some observations on Besov and Lizorkin–Triebel spaces, Math. Scand., Volume 40 (1977), pp. 94-104
[6] Analysis, American Mathematical Society, Providence, RI, 2001
[7] Sobolev Spaces, Springer-Verlag, Berlin, 1985
[8] Potential Theory in Euclidean Spaces, Gakkōtosho, Tokyo, 1996
[9] Fractional integrals on weighted and spaces, Trans. Amer. Math. Soc., Volume 287 (1985), pp. 293-321
[10] A constructive proof of the Fefferman–Stein decomposition of , Acta Math., Volume 148 (1982), pp. 215-241
Cité par Sources :
Commentaires - Politique