[Explosion de solutions de l'équation de la chaleur semi-linéaire avec un terme viscoélastique et un flux de limite non linéaire]
Dans cet article, on étudie une équation de la chaleur semi-linéaire
In this article, we study a semilinear heat equation
Accepté le :
Publié le :
Yuzhu Han 1 ; Wenjie Gao 1 ; Haixia Li 2
@article{CRMATH_2015__353_9_825_0, author = {Yuzhu Han and Wenjie Gao and Haixia Li}, title = {Blow-up of solutions to a semilinear heat equation with a viscoelastic term and a nonlinear boundary flux}, journal = {Comptes Rendus. Math\'ematique}, pages = {825--830}, publisher = {Elsevier}, volume = {353}, number = {9}, year = {2015}, doi = {10.1016/j.crma.2015.07.003}, language = {en}, }
TY - JOUR AU - Yuzhu Han AU - Wenjie Gao AU - Haixia Li TI - Blow-up of solutions to a semilinear heat equation with a viscoelastic term and a nonlinear boundary flux JO - Comptes Rendus. Mathématique PY - 2015 SP - 825 EP - 830 VL - 353 IS - 9 PB - Elsevier DO - 10.1016/j.crma.2015.07.003 LA - en ID - CRMATH_2015__353_9_825_0 ER -
%0 Journal Article %A Yuzhu Han %A Wenjie Gao %A Haixia Li %T Blow-up of solutions to a semilinear heat equation with a viscoelastic term and a nonlinear boundary flux %J Comptes Rendus. Mathématique %D 2015 %P 825-830 %V 353 %N 9 %I Elsevier %R 10.1016/j.crma.2015.07.003 %G en %F CRMATH_2015__353_9_825_0
Yuzhu Han; Wenjie Gao; Haixia Li. Blow-up of solutions to a semilinear heat equation with a viscoelastic term and a nonlinear boundary flux. Comptes Rendus. Mathématique, Volume 353 (2015) no. 9, pp. 825-830. doi : 10.1016/j.crma.2015.07.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.07.003/
[1] Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., Volume 164 (2002), pp. 213-259
[2] Sobolev Spaces, Elsevier, 2003 (access online via)
[3] Global existence and uniform energy decay rates for the semilinear parabolic equation with a memory term and mixed boundary condition, Abstr. Appl. Anal., Volume 2013 (2013) (Article ID 532935)
[4] Blow up of solutions with positive initial energy for the nonlocal semilinear heat equation, J. Korean Soc. Ind. Appl. Math., Volume 16 (2012), pp. 235-242
[5] Boundedness of global solutions for the heat equation with nonlinear boundary conditions, Comment. Math. Univ. Carol., Volume 30 (1989), pp. 479-484
[6] The blowup rate for the heat equation with a nonlinear boundary condition, Math. Methods Appl. Sci., Volume 14 (1991), pp. 197-205
[7] Blowup of positive solutions of semilinear heat equations, Indiana Univ. Math. J., Volume 34 (1985), pp. 425-477
[8] Asymptotic self-similar blowup of semilinear heat equations, Commun. Pure Appl. Math., Volume 38 (1985), pp. 297-319
[9] Characterizing blowup using similarity variables, Indiana Univ. Math. J., Volume 36 (1987), pp. 425-447
[10] Nondegeneracy of blowup for semilinear heat equations, Commun. Pure Appl. Math., Volume 42 (1989), pp. 845-884
[11] The profile near blowup time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., Volume 346 (1994), pp. 117-135
[12] Blow-up of solutions of a semilinear heat equation with a visco-elastic term, Prog. Nonlinear Differ. Equ. Appl., Volume 64 (2005), pp. 351-356
[13] Blow up of solutions of a semilinear heat equation with a memory term, Abstr. Appl. Anal., Volume 2 (2005), pp. 87-94
[14] Asymptotic stability for nonlinear parabolic systems, Energy Methods in Continuum Mechanics, Springer, The Netherlands, 1996, pp. 66-74
[15] Electrorheological Fluids: Modelling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000
[16] On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition, SIAM J. Math. Anal., Volume 6 (1975), pp. 85-90
[17] An blow-up estimate for a nonlinear heat equation, Commun. Pure Appl. Math., Volume 38 (1985), pp. 291-295
[18] On parabolic Volterra equations in several space dimensions, SIAM J. Math. Anal., Volume 22 (1991), pp. 1723-1737
[19] Weak and classical solutions of some Volterra integro-differential equations, Commun. Partial Differ. Equ., Volume 17 (1992), pp. 1369-1385
Cité par Sources :
☆ The project is supported by NSFC (11271154, 11401252), by Science and Technology Development Project of Jilin Province (20150201058NY) and by the 985 program of Jilin University. The first author is also supported by Fundamental Research Funds of Jilin University (450060501179).
Commentaires - Politique