[Résolution d'équations matricielles de Sylvester mixtes par décompositions de matrices]
En utilisant les décompositions en valeurs singulières généralisées (GSVDs) de couples de matrices, on établit une condition nécessaire et suffisante de résolubilité d'équations de Sylvester mixtes et on donne une représentation explicite de la solution générale. On étudie également la solution de norme minimale d'équations matricielles.
By applying the generalized singular-value decompositions (GSVDs) of matrix pairs, a necessary and sufficient solvability condition for mixed Sylvester equations is established, the explicit representation of the general solution is given. Also, the minimum-norm solution of the matrix equations is discussed.
Accepté le :
Publié le :
Yongxin Yuan 1
@article{CRMATH_2015__353_11_1053_0, author = {Yongxin Yuan}, title = {Solving the mixed {Sylvester} matrix equations by matrix decompositions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1053--1059}, publisher = {Elsevier}, volume = {353}, number = {11}, year = {2015}, doi = {10.1016/j.crma.2015.08.010}, language = {en}, }
Yongxin Yuan. Solving the mixed Sylvester matrix equations by matrix decompositions. Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, pp. 1053-1059. doi : 10.1016/j.crma.2015.08.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2015.08.010/
[1] The matrix equation , Linear Algebra Appl., Volume 25 (1979), pp. 41-43
[2] Generalized Inverses: Theory and Applications, Springer, New York, 2003
[3] Matrix Computations, The Johns Hopkins University Press, Baltimore, MD, USA, 1983
[4] Simultaneous solutions of matrix equations and simultaneous equivalence of matrices, Linear Algebra Appl., Volume 437 (2012), pp. 2325-2339
[5] Ranks of solutions of the linear matrix equation , Comput. Math. Appl., Volume 52 (2006), pp. 861-872
[6] Towards a generalized singular value decomposition, SIAM J. Numer. Anal., Volume 18 (1981), pp. 398-405
[7] Computing the CS-decomposition of a partitioned orthogonal matrix, Numer. Math., Volume 40 (1982), pp. 297-306
[8] Solvability conditions and general solution for mixed Sylvester equations, Automatica, Volume 49 (2013), pp. 2713-2719
Cité par Sources :
Commentaires - Politique