[Problème de Cauchy sur un cône caractéristique pour le système Einstein–Vlasov : (I) contraintes initiales]
Dans cet article, on considère le problème de Cauchy caractéristique sur un cône pour le système des équations d'Einstein–Vlasov en jauge temporelle. On met en évidence les contraintes dépendant de la jauge, qui ensemble avec les contraintes hamiltoniennes et impulsionnelles constituent l'ensemble des équations des contraintes pour le cadre considéré. On étudie la résolution globale de ces équations à partir de certaines données indépendantes, le comportement des données initiales ainsi déduites au voisinage du sommet du cône et la préservation de la jauge.
In this paper, one considers a Cauchy problem with data on a characteristic cone for the Einstein–Vlasov system in temporal gauge. One highlights gauge-dependent constraints that, supplemented by the standard constraints i.e. the Hamiltonian and the momentum constraints, define the full set of constraints for the considered setting. One studies their global resolution from a suitable choice of some free data, the behavior of the deduced initial data at the vertex of the cone, and the preservation of the gauge.
Accepté le :
Publié le :
Jean Baptiste Patenou 1
@article{CRMATH_2017__355_2_187_0, author = {Jean Baptiste Patenou}, title = {Cauchy problem on a characteristic cone for the {Einstein{\textendash}Vlasov} system: {(I)} {The} initial data constraints}, journal = {Comptes Rendus. Math\'ematique}, pages = {187--192}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2016.11.018}, language = {en}, }
TY - JOUR AU - Jean Baptiste Patenou TI - Cauchy problem on a characteristic cone for the Einstein–Vlasov system: (I) The initial data constraints JO - Comptes Rendus. Mathématique PY - 2017 SP - 187 EP - 192 VL - 355 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2016.11.018 LA - en ID - CRMATH_2017__355_2_187_0 ER -
Jean Baptiste Patenou. Cauchy problem on a characteristic cone for the Einstein–Vlasov system: (I) The initial data constraints. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 187-192. doi : 10.1016/j.crma.2016.11.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.11.018/
[1] Extensions of the Stability Theorem of the Minkowski Space in General Relativity, AMS/IP Stud. Adv. Math., vol. 45, Amer. Math. Soc., International Press, Cambridge, MA, USA, 2009
[2] Global characteristic problem for Einstein vacuum equations with small initial data I: the initial data constraints, J. Hyperbolic Differ. Equ., Volume 2 (2005), pp. 201-277
[3] General Relativity and the Einstein Equations, Oxford Mathematical Monographs, Oxford University Press, Oxford, UK, 2009
[4] Cauchy problem with data on a characteristic cone for the Einstein–Vlasov equations, June 2012 | arXiv
[5] Analysis, Manifolds, and Physics, Part II, North-Holland, Amsterdam, The Netherlands, 1989
[6] The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions, Ann. Henri Poincaré, Volume 12 (2011), pp. 419-482
[7] The Global Nonlinear Stability of the Minkowski Space, Princeton Math. Ser., vol. 41, 1993
[8] The many ways of the characteristic Cauchy problem, Class. Quantum Gravity, Volume 29 (2012), p. 145006 | arXiv
[9] Characteristic initial data and smoothness of Srci. I. Framework and results, Ann. Henri Poincaré, Volume 16 (2015), pp. 2131-2162
[10] Cauchy problem on two characteristic hypersurfaces for the Einstein–Vlasov scalar field equations in temporal gauge, C. R. Math. Rep. Acad. Sci. Canada (2017) (in press)
[11] The Evolution Problem in General Relativity, Prog. Math. Phys., Birkhäuser, Basel, Switzerland, 2003
[12] The global nonlinear stability of Minkowski space for the Einstein equations in presence of a massive field, C. R. Acad. Sci. Paris, Ser. I, Volume 354 (2016), pp. 948-953
[13] The global stability of Minkowski spacetime in harmonic gauge, Ann. of Math. (2), Volume 171 (2010), pp. 1401-1477
[14] On the local existence for the characteristic initial value problem in General relativity, Int. Math. Res. Not., Volume 20 (2012), pp. 4625-4678
[15] On Characteristic Cauchy Problems in General Relativity, University of Vienna, 2014 (PhD thesis in Physics)
[16] Characteristic Cauchy problem for the Einstein equations with Vlasov and Scalar matters in arbitrary dimension, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011), pp. 1053-1058
[17] Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations, Proc. Roy. Soc. Lond. A, Volume 427 (1990), pp. 221-239
[18] The Goursat problem for the Einstein–Vlasov system: (I) the initial data constraints, C. R. Math. Rep. Acad. Sci. Canada, Volume 36 (2014) no. 1, pp. 20-32
Cité par Sources :
Commentaires - Politique