Comptes Rendus
Partial differential equations/Calculus of variations
On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation
[Sur la topologie des singularités d'une solution de l'équation de Hamilton–Jacobi]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 176-180.

Nous étudions l'ensemble des singularités d'une solution de l'équation de Hamilton–Jacobi. Pour cette étude, nous utilisons une idée due aux deux premiers auteurs (Cannarsa and Cheng, Generalized characteristics and Lax–Oleinik operators: global result, preprint, arXiv:1605.07581, 2016) pour propager les singularités en utilisant le semi-groupe positif de Lax–Oleinik.

We address the topology of the set of singularities of a solution to a Hamilton–Jacobi equation. For this, we will apply the idea of the first two authors (Cannarsa and Cheng, Generalized characteristics and Lax–Oleinik operators: global result, preprint, arXiv:1605.07581, 2016) to use the positive Lax–Oleinik semi-group to propagate singularities.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2016.12.004

Piermarco Cannarsa 1 ; Wei Cheng 2 ; Albert Fathi 3

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma, Italy
2 Department of Mathematics, Nanjing University, Nanjing 210093, China
3 ENS de Lyon & IUF, UMPA, 46, allée d'Italie, 69007 Lyon, France
@article{CRMATH_2017__355_2_176_0,
     author = {Piermarco Cannarsa and Wei Cheng and Albert Fathi},
     title = {On the topology of the set of singularities of a solution to the {Hamilton{\textendash}Jacobi} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {176--180},
     publisher = {Elsevier},
     volume = {355},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crma.2016.12.004},
     language = {en},
}
TY  - JOUR
AU  - Piermarco Cannarsa
AU  - Wei Cheng
AU  - Albert Fathi
TI  - On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 176
EP  - 180
VL  - 355
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2016.12.004
LA  - en
ID  - CRMATH_2017__355_2_176_0
ER  - 
%0 Journal Article
%A Piermarco Cannarsa
%A Wei Cheng
%A Albert Fathi
%T On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation
%J Comptes Rendus. Mathématique
%D 2017
%P 176-180
%V 355
%N 2
%I Elsevier
%R 10.1016/j.crma.2016.12.004
%G en
%F CRMATH_2017__355_2_176_0
Piermarco Cannarsa; Wei Cheng; Albert Fathi. On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 176-180. doi : 10.1016/j.crma.2016.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.12.004/

[1] P. Albano; P. Cannarsa; K.T. Nguyen; C. Sinestrari Singular gradient flow of the distance function and homotopy equivalence, Math. Ann., Volume 356 (2013), pp. 23-43

[2] P. Bernard Existence of C1,1 critical sub-solutions of the Hamilton–Jacobi equation on compact manifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 40 (2007) no. 3, pp. 445-452

[3] A. Brown; C. Pearcy An Introduction to Analysis, Graduate Texts in Mathematics, vol. 154, Springer-Verlag, New York, 1995

[4] P. Cannarsa; W. Cheng Generalized characteristics and Lax–Oleinik operators: global result, 2016 (preprint) | arXiv

[5] J. Dugundji Topology, Allyn and Bacon, Inc., Boston, MA, USA, 1966

[6] A. Fathi Weak KAM from a PDE point of view: viscosity solutions of the Hamilton–Jacobi equation and Aubry set, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (2012), pp. 193-1236

Cité par Sources :

Commentaires - Politique