[Sur la topologie des singularités d'une solution de l'équation de Hamilton–Jacobi]
Nous étudions l'ensemble des singularités d'une solution de l'équation de Hamilton–Jacobi. Pour cette étude, nous utilisons une idée due aux deux premiers auteurs (Cannarsa and Cheng, Generalized characteristics and Lax–Oleinik operators: global result, preprint, arXiv:1605.07581, 2016) pour propager les singularités en utilisant le semi-groupe positif de Lax–Oleinik.
We address the topology of the set of singularities of a solution to a Hamilton–Jacobi equation. For this, we will apply the idea of the first two authors (Cannarsa and Cheng, Generalized characteristics and Lax–Oleinik operators: global result, preprint, arXiv:1605.07581, 2016) to use the positive Lax–Oleinik semi-group to propagate singularities.
Accepté le :
Publié le :
Piermarco Cannarsa 1 ; Wei Cheng 2 ; Albert Fathi 3
@article{CRMATH_2017__355_2_176_0, author = {Piermarco Cannarsa and Wei Cheng and Albert Fathi}, title = {On the topology of the set of singularities of a solution to the {Hamilton{\textendash}Jacobi} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {176--180}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2016.12.004}, language = {en}, }
TY - JOUR AU - Piermarco Cannarsa AU - Wei Cheng AU - Albert Fathi TI - On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation JO - Comptes Rendus. Mathématique PY - 2017 SP - 176 EP - 180 VL - 355 IS - 2 PB - Elsevier DO - 10.1016/j.crma.2016.12.004 LA - en ID - CRMATH_2017__355_2_176_0 ER -
%0 Journal Article %A Piermarco Cannarsa %A Wei Cheng %A Albert Fathi %T On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation %J Comptes Rendus. Mathématique %D 2017 %P 176-180 %V 355 %N 2 %I Elsevier %R 10.1016/j.crma.2016.12.004 %G en %F CRMATH_2017__355_2_176_0
Piermarco Cannarsa; Wei Cheng; Albert Fathi. On the topology of the set of singularities of a solution to the Hamilton–Jacobi equation. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 176-180. doi : 10.1016/j.crma.2016.12.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.12.004/
[1] Singular gradient flow of the distance function and homotopy equivalence, Math. Ann., Volume 356 (2013), pp. 23-43
[2] Existence of critical sub-solutions of the Hamilton–Jacobi equation on compact manifolds, Ann. Sci. Éc. Norm. Supér. (4), Volume 40 (2007) no. 3, pp. 445-452
[3] An Introduction to Analysis, Graduate Texts in Mathematics, vol. 154, Springer-Verlag, New York, 1995
[4] Generalized characteristics and Lax–Oleinik operators: global result, 2016 (preprint) | arXiv
[5] Topology, Allyn and Bacon, Inc., Boston, MA, USA, 1966
[6] Weak KAM from a PDE point of view: viscosity solutions of the Hamilton–Jacobi equation and Aubry set, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (2012), pp. 193-1236
Cité par Sources :
Commentaires - Politique