Comptes Rendus
Lie algebras
A remark on boundary level admissible representations
[Une remarque sur les représentations admissibles de niveau limite]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 128-132.

Nous remarquons la conséquence suivante de notre formule de caractères. Pour un niveau limite, les caractères d'une représentation admissible d'une algèbre de Kac–Moody affine ainsi que de la W-algèbre correspondante s'expriment comme des produits de formes de Jacobi ϑ11(τ,z).

We point out that it is immediate by our character formula that in the case of a boundary level the characters of admissible representations of affine Kac–Moody algebras and the corresponding W-algebras decompose in products in terms of the Jacobi form ϑ11(τ,z).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.01.008

Victor G. Kac 1 ; Minoru Wakimoto 1

1 Department of Mathematics, M.I.T., Cambridge, MA 02139, USA
@article{CRMATH_2017__355_2_128_0,
     author = {Victor G. Kac and Minoru Wakimoto},
     title = {A remark on boundary level admissible representations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {128--132},
     publisher = {Elsevier},
     volume = {355},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crma.2017.01.008},
     language = {en},
}
TY  - JOUR
AU  - Victor G. Kac
AU  - Minoru Wakimoto
TI  - A remark on boundary level admissible representations
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 128
EP  - 132
VL  - 355
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crma.2017.01.008
LA  - en
ID  - CRMATH_2017__355_2_128_0
ER  - 
%0 Journal Article
%A Victor G. Kac
%A Minoru Wakimoto
%T A remark on boundary level admissible representations
%J Comptes Rendus. Mathématique
%D 2017
%P 128-132
%V 355
%N 2
%I Elsevier
%R 10.1016/j.crma.2017.01.008
%G en
%F CRMATH_2017__355_2_128_0
Victor G. Kac; Minoru Wakimoto. A remark on boundary level admissible representations. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 128-132. doi : 10.1016/j.crma.2017.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.008/

[1] C. Beem; M. Lemos; P. Liendo; W. Peelaers; L. Rastelli; B.C. van Rees Infinite chiral symmetry in four dimensions, Commun. Math. Phys., Volume 336 (2015) no. 3, pp. 1359-1433

[2] M. Gorelik; V.G. Kac Characters of (relatively) integrable modules over affine Lie superalgebras, Jpn. J. Math., Volume 10 (2015) no. 2, pp. 135-235

[3] V.G. Kac Infinite-Dimensional Lie Algebras, Cambridge University Press, 1990

[4] V.G. Kac; S.-S. Roan; M. Wakimoto Quantum reduction of affine superalgebras, Commun. Math. Phys., Volume 241 (2003), pp. 307-342

[5] V.G. Kac; M. Wakimoto Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA, Volume 85 (1988), pp. 4956-4960

[6] V.G. Kac; M. Wakimoto Classification of modular invariant representations of affine algebras, Advanced Series in Mathematical Physics, vol. 7, World Scientific, 1989, pp. 138-177

[7] V.G. Kac; M. Wakimoto Representations of affine superalgebras and mock theta functions, Transform. Groups, Volume 19 (2014), pp. 387-455

[8] J. Song, D. Xie, W. Yan, Chiral algebra, Higgs branch and superconformal index of the generalized Argyres–Douglas theory, in preparation.

[9] E. Verlinde Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B, Volume 300 (1988), pp. 360-375

[10] D. Xie; W. Yan; S.-T. Yau Chiral algebra of Argyres–Douglas theory from M5 brane | arXiv

Cité par Sources :

Commentaires - Politique