[Une remarque sur les représentations admissibles de niveau limite]
We point out that it is immediate by our character formula that in the case of a boundary level the characters of admissible representations of affine Kac–Moody algebras and the corresponding W-algebras decompose in products in terms of the Jacobi form
Nous remarquons la conséquence suivante de notre formule de caractères. Pour un niveau limite, les caractères d'une représentation admissible d'une algèbre de Kac–Moody affine ainsi que de la W-algèbre correspondante s'expriment comme des produits de formes de Jacobi
Accepté le :
Publié le :
Victor G. Kac 1 ; Minoru Wakimoto 1
@article{CRMATH_2017__355_2_128_0, author = {Victor G. Kac and Minoru Wakimoto}, title = {A remark on boundary level admissible representations}, journal = {Comptes Rendus. Math\'ematique}, pages = {128--132}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2017.01.008}, language = {en}, }
Victor G. Kac; Minoru Wakimoto. A remark on boundary level admissible representations. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 128-132. doi : 10.1016/j.crma.2017.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.008/
[1] Infinite chiral symmetry in four dimensions, Commun. Math. Phys., Volume 336 (2015) no. 3, pp. 1359-1433
[2] Characters of (relatively) integrable modules over affine Lie superalgebras, Jpn. J. Math., Volume 10 (2015) no. 2, pp. 135-235
[3] Infinite-Dimensional Lie Algebras, Cambridge University Press, 1990
[4] Quantum reduction of affine superalgebras, Commun. Math. Phys., Volume 241 (2003), pp. 307-342
[5] Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA, Volume 85 (1988), pp. 4956-4960
[6] Classification of modular invariant representations of affine algebras, Advanced Series in Mathematical Physics, vol. 7, World Scientific, 1989, pp. 138-177
[7] Representations of affine superalgebras and mock theta functions, Transform. Groups, Volume 19 (2014), pp. 387-455
[8] J. Song, D. Xie, W. Yan, Chiral algebra, Higgs branch and superconformal index of the generalized Argyres–Douglas theory, in preparation.
[9] Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B, Volume 300 (1988), pp. 360-375
[10] Chiral algebra of Argyres–Douglas theory from M5 brane | arXiv
Cité par Sources :
Commentaires - Politique