[Une remarque sur les représentations admissibles de niveau limite]
Nous remarquons la conséquence suivante de notre formule de caractères. Pour un niveau limite, les caractères d'une représentation admissible d'une algèbre de Kac–Moody affine ainsi que de la W-algèbre correspondante s'expriment comme des produits de formes de Jacobi .
We point out that it is immediate by our character formula that in the case of a boundary level the characters of admissible representations of affine Kac–Moody algebras and the corresponding W-algebras decompose in products in terms of the Jacobi form .
Accepté le :
Publié le :
Victor G. Kac 1 ; Minoru Wakimoto 1
@article{CRMATH_2017__355_2_128_0, author = {Victor G. Kac and Minoru Wakimoto}, title = {A remark on boundary level admissible representations}, journal = {Comptes Rendus. Math\'ematique}, pages = {128--132}, publisher = {Elsevier}, volume = {355}, number = {2}, year = {2017}, doi = {10.1016/j.crma.2017.01.008}, language = {en}, }
Victor G. Kac; Minoru Wakimoto. A remark on boundary level admissible representations. Comptes Rendus. Mathématique, Volume 355 (2017) no. 2, pp. 128-132. doi : 10.1016/j.crma.2017.01.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.01.008/
[1] Infinite chiral symmetry in four dimensions, Commun. Math. Phys., Volume 336 (2015) no. 3, pp. 1359-1433
[2] Characters of (relatively) integrable modules over affine Lie superalgebras, Jpn. J. Math., Volume 10 (2015) no. 2, pp. 135-235
[3] Infinite-Dimensional Lie Algebras, Cambridge University Press, 1990
[4] Quantum reduction of affine superalgebras, Commun. Math. Phys., Volume 241 (2003), pp. 307-342
[5] Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Natl. Acad. Sci. USA, Volume 85 (1988), pp. 4956-4960
[6] Classification of modular invariant representations of affine algebras, Advanced Series in Mathematical Physics, vol. 7, World Scientific, 1989, pp. 138-177
[7] Representations of affine superalgebras and mock theta functions, Transform. Groups, Volume 19 (2014), pp. 387-455
[8] J. Song, D. Xie, W. Yan, Chiral algebra, Higgs branch and superconformal index of the generalized Argyres–Douglas theory, in preparation.
[9] Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B, Volume 300 (1988), pp. 360-375
[10] Chiral algebra of Argyres–Douglas theory from M5 brane | arXiv
Cité par Sources :
Commentaires - Politique