[Une formule de trace pour les fonctions de contraction et les fonctions analytiques opérateurs-lipschitziennes]
Nous considérons dans cette note le problème qui consiste à trouver le trace de , où T et R sont des contractions dans un espace hilbertien et f est une fonction analytique dans le disque unité . Il est bien connu que, si f est une fonction analytique dans qui est opérateurs-lipschitzienne, la différence est de classe trace, c'est-à-dire que si , alors . Le résultat principal de cette note établit qu'il existe une fonction ξ (une fonction de décalage spectral) sur le cercle unité dans l'espace pour laquelle la formule de trace suivante est vraie : pour n'importe quelle fonction f opérateurs-lipschitzienne et analytique dans .
In this note, we study the problem of evaluating the trace of , where T and R are contractions on a Hilbert space with trace class difference, i.e. , and f is a function analytic in the unit disk . It is well known that if f is an operator Lipschitz function analytic in , then . The main result of the note says that there exists a function ξ (a spectral shift function) on the unit circle of class such that the following trace formula holds: , whenever T and R are contractions with , and f is an operator Lipschitz function analytic in .
Accepté le :
Publié le :
Mark Malamud 1, 2 ; Hagen Neidhardt 3 ; Vladimir Peller 2, 4
@article{CRMATH_2017__355_7_806_0, author = {Mark Malamud and Hagen Neidhardt and Vladimir Peller}, title = {A trace formula for functions of contractions and analytic operator {Lipschitz} functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {806--811}, publisher = {Elsevier}, volume = {355}, number = {7}, year = {2017}, doi = {10.1016/j.crma.2017.06.003}, language = {en}, }
TY - JOUR AU - Mark Malamud AU - Hagen Neidhardt AU - Vladimir Peller TI - A trace formula for functions of contractions and analytic operator Lipschitz functions JO - Comptes Rendus. Mathématique PY - 2017 SP - 806 EP - 811 VL - 355 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2017.06.003 LA - en ID - CRMATH_2017__355_7_806_0 ER -
%0 Journal Article %A Mark Malamud %A Hagen Neidhardt %A Vladimir Peller %T A trace formula for functions of contractions and analytic operator Lipschitz functions %J Comptes Rendus. Mathématique %D 2017 %P 806-811 %V 355 %N 7 %I Elsevier %R 10.1016/j.crma.2017.06.003 %G en %F CRMATH_2017__355_7_806_0
Mark Malamud; Hagen Neidhardt; Vladimir Peller. A trace formula for functions of contractions and analytic operator Lipschitz functions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 806-811. doi : 10.1016/j.crma.2017.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.003/
[1] On the summability of the spectral shift function for pair of contractions and dissipative operators, J. Oper. Theory, Volume 24 (1990), pp. 187-205
[2] Operator Lipschitz functions, Russ. Math. Surv., Volume 71 (2016) no. 4, pp. 605-702
[3] Krein's trace formula for unitary operators and operator Lipschitz functions, Funct. Anal. Appl., Volume 50 (2016) no. 3, pp. 167-175
[4] (Problems of Math. Phys.), Volume vol. 1, Leningrad Univ., New York (1966), pp. 33-67 (in Russian). English transl.:, Topics Math. Phys., vol. 1, 1967, Consultants Bureau Plenum Publishing Corporation, pp. 25-54
[5] An example of a Lipschitzian function of selfadjoint operators that yields a nonnuclear increase under a nuclear perturbation, Zap. Nauč. Semin. POMI, Volume 30 (1972), pp. 146-153 (in Russian)
[6] On fully operator Lipschitz functions, J. Funct. Anal., Volume 253 (2007) no. 2, pp. 711-728
[7] On a trace formula in perturbation theory, Mat. Sb., Volume 33 (1953), pp. 597-626 (in Russian)
[8] On perturbation determinants and a trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR, Volume 144 (1962) no. 2, pp. 268-271 (in Russian)
[9] Perturbation determinants and a trace formula for some classes of pairs of operators, J. Oper. Theory, Volume 17 (1987), pp. 129-187
[10] Eine Erweiterung der Spurformel der Störungstheorie, Math. Nachr., Volume 30 (1965), pp. 123-135
[11] On a problem in perturbation theory connected with quantum statistics, Usp. Mat. Nauk, Volume 7 (1952), pp. 171-180 (in Russian)
[12] Trace formulas for additive and non-additive perturbations, Adv. Math., Volume 274 (2015), pp. 736-832
[13] Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funkc. Anal. Prilozh., Volume 19 (1985) no. 2, pp. 37-51 (in Russian). English transl.: Funct. Anal. Appl., 19, 1985, pp. 111-123
[14] Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and partial differential equations, Lect. Notes Pure Appl. Math., vol. 122, Dekker, New York, 1990, pp. 529-544
[15] For which f does imply that ?, Oper. Theory, Volume 24 (1987), pp. 289-294 (Birkhäuser)
[16] Differentiability of functions of contractions, Linear and Complex Analysis, AMS Translations, Ser. 2, vol. 226, AMS, Providence, 2009, pp. 109-131
[17] The Lifshits–Krein trace formula and operator Lipschitz functions, Proc. Amer. Math. Soc., Volume 144 (2016), pp. 5207-5215
[18] The spectral shift function for a dissipative and a selfadjoint operator, and trace formulas for resonances, Mat. Sb. (N. S.), Volume 125 (1984) no. 167, pp. 420-430
[19] A trace formula for a contractive and a unitary operator, Funkc. Anal. Prilozh., Volume 21 (1987) no. 4, pp. 85-87
[20] Analyse harmonique des opérateurs de l'espace de Hilbert, Akadémiaí Kiadó/Masson et Cie, Budapest/Paris, 1967
Cité par Sources :
Commentaires - Politique