Comptes Rendus
Harmonic analysis/Functional analysis
A trace formula for functions of contractions and analytic operator Lipschitz functions
[Une formule de trace pour les fonctions de contraction et les fonctions analytiques opérateurs-lipschitziennes]
Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 806-811.

Nous considérons dans cette note le problème qui consiste à trouver le trace de f(T)f(R), où T et R sont des contractions dans un espace hilbertien et f est une fonction analytique dans le disque unité D. Il est bien connu que, si f est une fonction analytique dans D qui est opérateurs-lipschitzienne, la différence TR est de classe trace, c'est-à-dire que si TRS1, alors f(T)f(R)S1. Le résultat principal de cette note établit qu'il existe une fonction ξ (une fonction de décalage spectral) sur le cercle unité T dans l'espace L1(T) pour laquelle la formule de trace suivante est vraie : trace(f(T)f(R))=Tf(ζ)ξ(ζ)dζ pour n'importe quelle fonction f opérateurs-lipschitzienne et analytique dans D.

In this note, we study the problem of evaluating the trace of f(T)f(R), where T and R are contractions on a Hilbert space with trace class difference, i.e. TRS1, and f is a function analytic in the unit disk D. It is well known that if f is an operator Lipschitz function analytic in D, then f(T)f(R)S1. The main result of the note says that there exists a function ξ (a spectral shift function) on the unit circle T of class L1(T) such that the following trace formula holds: trace(f(T)f(R))=Tf(ζ)ξ(ζ)dζ, whenever T and R are contractions with TRS1, and f is an operator Lipschitz function analytic in D.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2017.06.003

Mark Malamud 1, 2 ; Hagen Neidhardt 3 ; Vladimir Peller 2, 4

1 Institute of Applied Mathematics and Mechanics, NAS of Ukraine, Slavyansk, Ukraine
2 RUDN University, 6 Miklukho-Maklay St., Moscow, 117198, Russia
3 Institut für Angewandte Analysis und Stochastik, Mohrenstr. 39, 10117 Berlin, Germany
4 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
@article{CRMATH_2017__355_7_806_0,
     author = {Mark Malamud and Hagen Neidhardt and Vladimir Peller},
     title = {A trace formula for functions of contractions and analytic operator {Lipschitz} functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {806--811},
     publisher = {Elsevier},
     volume = {355},
     number = {7},
     year = {2017},
     doi = {10.1016/j.crma.2017.06.003},
     language = {en},
}
TY  - JOUR
AU  - Mark Malamud
AU  - Hagen Neidhardt
AU  - Vladimir Peller
TI  - A trace formula for functions of contractions and analytic operator Lipschitz functions
JO  - Comptes Rendus. Mathématique
PY  - 2017
SP  - 806
EP  - 811
VL  - 355
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crma.2017.06.003
LA  - en
ID  - CRMATH_2017__355_7_806_0
ER  - 
%0 Journal Article
%A Mark Malamud
%A Hagen Neidhardt
%A Vladimir Peller
%T A trace formula for functions of contractions and analytic operator Lipschitz functions
%J Comptes Rendus. Mathématique
%D 2017
%P 806-811
%V 355
%N 7
%I Elsevier
%R 10.1016/j.crma.2017.06.003
%G en
%F CRMATH_2017__355_7_806_0
Mark Malamud; Hagen Neidhardt; Vladimir Peller. A trace formula for functions of contractions and analytic operator Lipschitz functions. Comptes Rendus. Mathématique, Volume 355 (2017) no. 7, pp. 806-811. doi : 10.1016/j.crma.2017.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.06.003/

[1] V.M. Adamjan; H. Neidhardt On the summability of the spectral shift function for pair of contractions and dissipative operators, J. Oper. Theory, Volume 24 (1990), pp. 187-205

[2] A.B. Aleksandrov; V.V. Peller Operator Lipschitz functions, Russ. Math. Surv., Volume 71 (2016) no. 4, pp. 605-702

[3] A.B. Aleksandrov; V.V. Peller Krein's trace formula for unitary operators and operator Lipschitz functions, Funct. Anal. Appl., Volume 50 (2016) no. 3, pp. 167-175

[4] M.S. Birman; M.Z. Solomyak (Problems of Math. Phys.), Volume vol. 1, Leningrad Univ., New York (1966), pp. 33-67 (in Russian). English transl.:, Topics Math. Phys., vol. 1, 1967, Consultants Bureau Plenum Publishing Corporation, pp. 25-54

[5] Yu.B. Farforovskaya An example of a Lipschitzian function of selfadjoint operators that yields a nonnuclear increase under a nuclear perturbation, Zap. Nauč. Semin. POMI, Volume 30 (1972), pp. 146-153 (in Russian)

[6] E. Kissin; V. Shulman On fully operator Lipschitz functions, J. Funct. Anal., Volume 253 (2007) no. 2, pp. 711-728

[7] M.G. Krein On a trace formula in perturbation theory, Mat. Sb., Volume 33 (1953), pp. 597-626 (in Russian)

[8] M.G. Krein On perturbation determinants and a trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR, Volume 144 (1962) no. 2, pp. 268-271 (in Russian)

[9] M.G. Krein Perturbation determinants and a trace formula for some classes of pairs of operators, J. Oper. Theory, Volume 17 (1987), pp. 129-187

[10] H. Langer Eine Erweiterung der Spurformel der Störungstheorie, Math. Nachr., Volume 30 (1965), pp. 123-135

[11] I.M. Lifshits On a problem in perturbation theory connected with quantum statistics, Usp. Mat. Nauk, Volume 7 (1952), pp. 171-180 (in Russian)

[12] M. Malamud; H. Neidhardt Trace formulas for additive and non-additive perturbations, Adv. Math., Volume 274 (2015), pp. 736-832

[13] V.V. Peller Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funkc. Anal. Prilozh., Volume 19 (1985) no. 2, pp. 37-51 (in Russian). English transl.: Funct. Anal. Appl., 19, 1985, pp. 111-123

[14] V.V. Peller Hankel operators in the perturbation theory of unbounded self-adjoint operators, Analysis and partial differential equations, Lect. Notes Pure Appl. Math., vol. 122, Dekker, New York, 1990, pp. 529-544

[15] V.V. Peller For which f does ABSp imply that f(A)f(B)Sp?, Oper. Theory, Volume 24 (1987), pp. 289-294 (Birkhäuser)

[16] V.V. Peller Differentiability of functions of contractions, Linear and Complex Analysis, AMS Translations, Ser. 2, vol. 226, AMS, Providence, 2009, pp. 109-131

[17] V.V. Peller The Lifshits–Krein trace formula and operator Lipschitz functions, Proc. Amer. Math. Soc., Volume 144 (2016), pp. 5207-5215

[18] A.V. Rybkin The spectral shift function for a dissipative and a selfadjoint operator, and trace formulas for resonances, Mat. Sb. (N. S.), Volume 125 (1984) no. 167, pp. 420-430

[19] A.V. Rybkin A trace formula for a contractive and a unitary operator, Funkc. Anal. Prilozh., Volume 21 (1987) no. 4, pp. 85-87

[20] B. Sz.-Nagy; C. Foiaş Analyse harmonique des opérateurs de l'espace de Hilbert, Akadémiaí Kiadó/Masson et Cie, Budapest/Paris, 1967

Cité par Sources :

Commentaires - Politique