[Sur l’univalence locale des champs de vecteurs holomorphes non-dégénérés]
On prouve que, en toute dimension, tout germe de champs de vecteurs holomorphe singulier non-dégénéré sur une variété est univalent au sens de Palais (semicomplet au sens de Rebelo) : en restriction à un voisinage convenable du point singulier, ses solutions n’ont pas de multivaluation. Ceci implique que, à la différence du cas dégénéré, un germe de champ de vecteurs holomorphe non-dégénéré est le modèle local d’un champ de vecteurs holomorphe complet sur une variété complexe (pas nécessairement séparée).
We prove that, in all dimensions, germs of nondegenerate holomorphic vector fields on complex manifolds are univalent in the sense of Palais (semicomplete in the sense of Rebelo), this is, that there exist neighborhoods of their singular points where all their solutions are single-valued. This implies that, in stark contrast with the degenerate case, all germs of nondegenerate holomorphic vector fields give local models for complete holomorphic vector fields on complex manifolds (albeit possibly non-Hausdorff ones).
Révisé le :
Accepté le :
Publié le :
Adolfo Guillot 1
@article{CRMATH_2020__358_7_877_0, author = {Adolfo Guillot}, title = {On the local univalence of nondegenerate holomorphic vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {877--880}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {7}, year = {2020}, doi = {10.5802/crmath.100}, language = {en}, }
Adolfo Guillot. On the local univalence of nondegenerate holomorphic vector fields. Comptes Rendus. Mathématique, Volume 358 (2020) no. 7, pp. 877-880. doi : 10.5802/crmath.100. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.100/
[1] Analytic form of differential equations. I, II, Tr. Mosk. Mat. O.-va, Volume 25 (1971), pp. 119-262 | MR | Zbl
[2] Singularités des flots holomorphes. II, Ann. Inst. Fourier, Volume 47 (1997) no. 4, pp. 1117-1174 | DOI | Numdam | MR | Zbl
[3] Lectures on analytic differential equations, Graduate Studies in Mathematics, 86, American Mathematical Society, 2008 | MR | Zbl
[4] A global formulation of the Lie theory of transformation groups, Memoirs of the American Mathematical Society, 22, American Mathematical Society, 1957 | MR | Zbl
[5] Singularités des flots holomorphes, Ann. Inst. Fourier, Volume 46 (1996) no. 2, pp. 411-428 | DOI | Numdam | MR | Zbl
[6] Réalisation de germes de feuilletages holomorphes par des champs semi-complets en dimension 2, Ann. Fac. Sci. Toulouse, Math., Volume 9 (2000) no. 4, pp. 735-763 | DOI | Numdam | MR | Zbl
[7] On the structure of singularities of holomorphic flows in dimension 3, Indiana Univ. Math. J., Volume 59 (2010) no. 3, pp. 891-927 | DOI | MR | Zbl
[8] Equivalence and semi-completude of foliations, Nonlinear Anal., Theory Methods Appl., Volume 64 (2006) no. 8, pp. 1654-1665 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique