Comptes Rendus
Probabilités
A backward Itô–Ventzell formula with an application to stochastic interpolation
Comptes Rendus. Mathématique, Volume 358 (2020) no. 7, pp. 881-886.

This Note and its extended version [7] present a novel backward Itô–Ventzell formula and an extension of the Aleeksev–Gröbner interpolating formula to stochastic flows. We also present some natural spectral conditions that yield direct and simple proofs of time uniform estimates of the difference between the two stochastic flows when their drift and diffusion functions are not the same.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.110
Classification : 47D07, 93E15, 60H07

Pierre Del Moral 1 ; Sumeetpal S. Singh 2

1 INRIA Bordeaux Research Center, University of Bordeaux, Talance, France
2 Department of Engineering, University of Cambridge, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_7_881_0,
     author = {Pierre Del Moral and Sumeetpal S. Singh},
     title = {A backward {It\^o{\textendash}Ventzell} formula with an application to stochastic interpolation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {881--886},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {7},
     year = {2020},
     doi = {10.5802/crmath.110},
     language = {en},
}
TY  - JOUR
AU  - Pierre Del Moral
AU  - Sumeetpal S. Singh
TI  - A backward Itô–Ventzell formula with an application to stochastic interpolation
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 881
EP  - 886
VL  - 358
IS  - 7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.110
LA  - en
ID  - CRMATH_2020__358_7_881_0
ER  - 
%0 Journal Article
%A Pierre Del Moral
%A Sumeetpal S. Singh
%T A backward Itô–Ventzell formula with an application to stochastic interpolation
%J Comptes Rendus. Mathématique
%D 2020
%P 881-886
%V 358
%N 7
%I Académie des sciences, Paris
%R 10.5802/crmath.110
%G en
%F CRMATH_2020__358_7_881_0
Pierre Del Moral; Sumeetpal S. Singh. A backward Itô–Ventzell formula with an application to stochastic interpolation. Comptes Rendus. Mathématique, Volume 358 (2020) no. 7, pp. 881-886. doi : 10.5802/crmath.110. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.110/

[1] Vladimir Alekseev An estimate for the perturbations of the solution of ordinary differential equations, Vestn. Mosk. Univ. (1961) no. 2, pp. 28-36 | MR

[2] Marc Arnaudon; Pierre Del Moral A duality formula and a particle Gibbs sampler for continuous time Feynman–Kac measures on path spaces (2018) (https://arxiv.org/abs/1805.05044)

[3] Marc Arnaudon; Pierre Del Moral A variational approach to nonlinear and interacting diffusions, Stochastic Anal. Appl., Volume 37 (2019) no. 5, pp. 717-748 | DOI | MR | Zbl

[4] Marc Arnaudon; Pierre Del Moral A second order analysis of McKean–Vlasov semigroups, 2020 (To appear in The Annals of Applied Probability)

[5] Adrian N. Bishop; Pierre Del Moral; Angèle Niclas A perturbation analysis of stochastic matrix Riccati diffusions, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 56 (2020) no. 2, pp. 884-916 | DOI | MR | Zbl

[6] Giuseppe Da Prato; Luciano Tubaro Some remarks about backward Itô formula and applications, Stochastic Anal. Appl., Volume 16 (1998) no. 6, pp. 993-1003 | Zbl

[7] Pierre Del Moral; Sumeetpal Sidhu Singh Backward Itô–Ventzell and stochastic interpolation formulae (2019) (https://hal.archives-ouvertes.fr/hal-02161914v4)

[8] David Nualart The Malliavin calculus and related topics, Probability and Its Applications, 1995, Springer, 2006 | Zbl

[9] Daniel Ocone; Etienne Pardoux A generalized Itô–Ventzell formula. Application to a class of anticipating stochastic differential equations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 25 (1989) no. 1, pp. 39-71 | Numdam | Zbl

[10] Etienne Pardoux; Philip E. Protter A two-sided stochastic integral and its calculus, Probab. Theory Relat. Fields, Volume 76 (1987) no. 1, pp. 15-49 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique