[Sur les attracteurs globaux dans un modèle mathématique de l’immunité antivirale]
Nous considérons le modèle mathématique introduit par Batholdy et al. [1] décrivant l’interaction entre les agents pathogènes viraux et le système immunitaire. Nous prouvons la stabilité globale asymptotique de l’état d’équilibre de l’infection si le taux de reproduction de base est supérieur à . Cela résout la conjecture annoncée dans [7].
We consider the mathematical model introduced by Batholdy et al. [1] describing the interaction between viral pathogens and immune system. We prove the global asymptotic stability of the infection steady-state if the basic reproductive ratio is greater than unity. That solves the conjecture announced in [7].
Révisé le :
Accepté le :
Publié le :
Alexei Tsygvintsev 1
@article{CRMATH_2020__358_11-12_1199_0, author = {Alexei Tsygvintsev}, title = {On the global attractors in one mathematical model of antiviral immunity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1199--1205}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {11-12}, year = {2020}, doi = {10.5802/crmath.140}, language = {en}, }
TY - JOUR AU - Alexei Tsygvintsev TI - On the global attractors in one mathematical model of antiviral immunity JO - Comptes Rendus. Mathématique PY - 2020 SP - 1199 EP - 1205 VL - 358 IS - 11-12 PB - Académie des sciences, Paris DO - 10.5802/crmath.140 LA - en ID - CRMATH_2020__358_11-12_1199_0 ER -
Alexei Tsygvintsev. On the global attractors in one mathematical model of antiviral immunity. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1199-1205. doi : 10.5802/crmath.140. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.140/
[1] Persistent Virus Infection despite Chronic Cytotoxic T-Lymphocyte Activation in Gamma Interferon-Deficient Mice Infected with Lymphocytic Choriomeningitis Virus, Journal of Virology, Volume 74 (2000) no. 22, pp. 10304-10311 | DOI
[2] On Global Asymptotic Stability of Solutions of Differential Equations, Trans. Am. Math. Soc., Volume 104 (1962), pp. 154-178 | MR | Zbl
[3] Some Extensions of Liapunov’s Second Method, IRE Trans. Inf. Theory, Volume 7 (1960) no. 4, pp. 520-527 | DOI | MR
[4] Stability by Liapunov’s Direct Method. With Applications., Mathematics in Science and Engineering, 4, Academic Press Inc., 1961 | MR | Zbl
[5] Janeway’s immunobiology, Garland Science, 2012
[6] The effect of immune responses in viral infections: A mathematical model view, Discrete Contin. Dyn. Syst., Volume 19 (2014) no. 10, pp. 3379-3396 | MR | Zbl
[7] Global stability in a viral infection model with lytic and non-lytic immune responses, Comput. Math. Appl., Volume 51 (2006) no. 9-10, pp. 1593-1610 | DOI | Zbl
[8] The structure of Lorenz attractors, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 73-99 | DOI | Numdam | Zbl
[9] The importance of lytic and non-lytic immune responses in viral infections, Trends Immunol., Volume 23 (2002) no. 4, pp. 194-200 | DOI
[10] Mathematical Analysis of Viral Replication Dynamics and Antiviral Treatment Strategies: From Basic Models to Age-Based Multi-Scale Modeling, Front. Microbiol., Volume 9 (2018), 1546 | DOI
Cité par Sources :
Commentaires - Politique