Comptes Rendus
Analyse fonctionnelle, Analyse harmonique
Continuity of the dual Haar measure
[Continuité de la mesure de Haar duale]
Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 415-419.

Étant donné un champ continu de groupes localement compacts, on montre que le champ des poids de Plancherel de leurs C*-algèbres est semi-continu inférieurement. On en déduit que, lorsque les groupes sont abéliens, le système de Haar dual d’un système de Haar continu est aussi continu.

Given a continuous field of locally compact groups, we show that the field of the Plancherel weights of their C*-algebras is lower semi-continuous. As a corollary, we obtain that the dual Haar system of a continuous Haar system of a locally compact abelian group bundle is also continuous.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.183

Jean Renault 1

1 Institut Denis Poisson (UMR 7013) Université d’Orléans et CNRS, 45067 Orléans Cedex 2, France.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_4_415_0,
     author = {Jean Renault},
     title = {Continuity of the dual {Haar} measure},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {415--419},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {4},
     year = {2021},
     doi = {10.5802/crmath.183},
     mrnumber = {4264324},
     zbl = {07362162},
     language = {en},
}
TY  - JOUR
AU  - Jean Renault
TI  - Continuity of the dual Haar measure
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 415
EP  - 419
VL  - 359
IS  - 4
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.183
LA  - en
ID  - CRMATH_2021__359_4_415_0
ER  - 
%0 Journal Article
%A Jean Renault
%T Continuity of the dual Haar measure
%J Comptes Rendus. Mathématique
%D 2021
%P 415-419
%V 359
%N 4
%I Académie des sciences, Paris
%R 10.5802/crmath.183
%G en
%F CRMATH_2021__359_4_415_0
Jean Renault. Continuity of the dual Haar measure. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 415-419. doi : 10.5802/crmath.183. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.183/

[1] François Combes Poids sur une C * -algèbre, J. Math. Pures Appl., Volume 47 (1968), pp. 57-100 | MR | Zbl

[2] François Combes Poids associé à une algèbre hilbertienne à gauche, Compos. Math., Volume 23 (1971) no. 1, pp. 49-77 | Numdam | Zbl

[3] Jacques Dixmier Les algèbres de von Neumann, Cahiers scientifiques, 25, Gauthier-Villars, 1969 | Zbl

[4] Jacques Dixmier Les C * -algèbres et leurs représentations, Cahiers scientifiques, 29, Gauthier-Villars, 1969 | Zbl

[5] Nicolaas P. Landsman; Birant Ramazan Quantization of Poisson algebras associated to Lie algebroids, Groupoids in analysis, geometry, and physics. AMS–IMS–SIAM joint summer research conference, University of Colorado, Boulder, CO, USA, June 20-24, 1999 (Contemporary Mathematics), Volume 282 (2001), pp. 159-192 | MR | Zbl

[6] Paul S. Muhly; Jean N. Renault; Dana P. Williams Equivalence and isomorphism for groupoid C * -algebras, J. Oper. Theory, Volume 17 (1987), pp. 3-22 | MR | Zbl

[7] Paul S. Muhly; Jean N. Renault; Dana P. Williams Continuous trace groupoid C * -algebras. III, Trans. Am. Math. Soc., Volume 348 (1996) no. 9, pp. 3621-3641 | DOI | MR | Zbl

[8] Gert Pedersen C*-algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press Inc., 1979 | MR | Zbl

[9] Jean N. Renault A groupoid approach to C * -algebras, Lecture Notes in Mathematics, 793, Springer, 1980 | MR | Zbl

[10] Şerban Strătilă Modular theory in operator algebras, Abacus Press, 1981 | Zbl

[11] Masamichi Takesaki Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, 128, Springer, 1970 | MR | Zbl

[12] Masamichi Takesaki Theory of operator algebras. II., Encyclopaedia of Mathematical Sciences, 125, Springer, 2003 | MR | Zbl

Cité par Sources :

Commentaires - Politique