[Continuité de la mesure de Haar duale]
Étant donné un champ continu de groupes localement compacts, on montre que le champ des poids de Plancherel de leurs C*-algèbres est semi-continu inférieurement. On en déduit que, lorsque les groupes sont abéliens, le système de Haar dual d’un système de Haar continu est aussi continu.
Given a continuous field of locally compact groups, we show that the field of the Plancherel weights of their C*-algebras is lower semi-continuous. As a corollary, we obtain that the dual Haar system of a continuous Haar system of a locally compact abelian group bundle is also continuous.
Accepté le :
Publié le :
DOI : 10.5802/crmath.183
Jean Renault 1
@article{CRMATH_2021__359_4_415_0, author = {Jean Renault}, title = {Continuity of the dual {Haar} measure}, journal = {Comptes Rendus. Math\'ematique}, pages = {415--419}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {4}, year = {2021}, doi = {10.5802/crmath.183}, mrnumber = {4264324}, zbl = {07362162}, language = {en}, }
Jean Renault. Continuity of the dual Haar measure. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 415-419. doi : 10.5802/crmath.183. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.183/
[1] Poids sur une -algèbre, J. Math. Pures Appl., Volume 47 (1968), pp. 57-100 | MR | Zbl
[2] Poids associé à une algèbre hilbertienne à gauche, Compos. Math., Volume 23 (1971) no. 1, pp. 49-77 | Numdam | Zbl
[3] Les algèbres de von Neumann, Cahiers scientifiques, 25, Gauthier-Villars, 1969 | Zbl
[4] Les -algèbres et leurs représentations, Cahiers scientifiques, 29, Gauthier-Villars, 1969 | Zbl
[5] Quantization of Poisson algebras associated to Lie algebroids, Groupoids in analysis, geometry, and physics. AMS–IMS–SIAM joint summer research conference, University of Colorado, Boulder, CO, USA, June 20-24, 1999 (Contemporary Mathematics), Volume 282 (2001), pp. 159-192 | MR | Zbl
[6] Equivalence and isomorphism for groupoid -algebras, J. Oper. Theory, Volume 17 (1987), pp. 3-22 | MR | Zbl
[7] Continuous trace groupoid -algebras. III, Trans. Am. Math. Soc., Volume 348 (1996) no. 9, pp. 3621-3641 | DOI | MR | Zbl
[8] C*-algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press Inc., 1979 | MR | Zbl
[9] A groupoid approach to -algebras, Lecture Notes in Mathematics, 793, Springer, 1980 | MR | Zbl
[10] Modular theory in operator algebras, Abacus Press, 1981 | Zbl
[11] Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, 128, Springer, 1970 | MR | Zbl
[12] Theory of operator algebras. II., Encyclopaedia of Mathematical Sciences, 125, Springer, 2003 | MR | Zbl
Cité par Sources :
Commentaires - Politique