Five binomial sums are extended by a free parameter
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.184
Mei Bai 1 ; Wenchang Chu 2

@article{CRMATH_2021__359_4_421_0, author = {Mei Bai and Wenchang Chu}, title = {Further {Equivalent} {Binomial} {Sums}}, journal = {Comptes Rendus. Math\'ematique}, pages = {421--425}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {4}, year = {2021}, doi = {10.5802/crmath.184}, mrnumber = {4264325}, zbl = {07362163}, language = {en}, }
Mei Bai; Wenchang Chu. Further Equivalent Binomial Sums. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 421-425. doi : 10.5802/crmath.184. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.184/
[1] A generalization of an identity due to Kimura and Ruehr, Integers, Volume 18A (2018), a1 | MR | Zbl
[2] Two binomial identities of Ruehr revisited, Am. Math. Mon., Volume 126 (2019) no. 3, pp. 217-225 | DOI | MR | Zbl
[3] On Ruehr’s identities, Ars Comb., Volume 139 (2018), pp. 247-254 | MR | Zbl
[4] Seven equivalent binomial sums, Discrete Math., Volume 343 (2020) no. 2, 111691 | MR | Zbl
[5] Generating functions and combinatorial identities, Glas. Mat., III. Ser., Volume 33 (1998) no. 1, pp. 1-12 | MR | Zbl
[6] Some binomial convolution formulas, Fibonacci Q., Volume 40 (2002) no. 1, pp. 19-32 | MR | Zbl
[7] Logarithms of a binomial series: Extension of a series of Knuth, Math. Commun., Volume 24 (2019) no. 1, pp. 83-90 | MR | Zbl
[8] Advanced Combinatorics. The art of finite and infinite expansions, Reidel Publishing Company, 1974 (Translated from the French by J. W. Nienhuys) | Zbl
[9] Note on the convolution of binomial coefficients, J. Integer Seq., Volume 16 (2013) no. 7, 13.7.6 | MR | Zbl
[10] Some Remarks on a recent article by J.-P. Allouche (2019) (https://arxiv.org/abs/1903.09511) | Zbl
[11] Some generalizations of Vandermonde’s convolution, Am. Math. Mon., Volume 63 (1956) no. 2, pp. 84-91 | DOI | MR | Zbl
[12] Concrete Mathematics, Addison-Wesley Publishing Group, 1989 | Zbl
[13] Ruehr’s identities with two additional parameters, Integers, Volume 16 (2016), A30 | MR | Zbl
[14] Change of variable formula for definite integral, Am. Math. Mon., Volume 87 (1980) no. 4, pp. 307-308
[15] Observationes variae in Mathesin puram, Acta Helvetica, Volume 3 (1758) no. 1, pp. 128-168 (reprinted in his Opera Mathematica, volume 1, p. 16–51)
[16] Proofs of Ruehr’s identities, Integers, Volume 14 (2014), A10 | MR | Zbl
[17] Combinatorial Identities, John Wiley & Sons, 1968 | Zbl
Cité par Sources :
Commentaires - Politique