Five binomial sums are extended by a free parameter , that are shown, through the generating function method, to have the same value. These sums generalize the ones by Ruehr (1980), who discovered them in the study of two unexpected equalities between definite integrals.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.184
Mei Bai 1 ; Wenchang Chu 2
@article{CRMATH_2021__359_4_421_0, author = {Mei Bai and Wenchang Chu}, title = {Further {Equivalent} {Binomial} {Sums}}, journal = {Comptes Rendus. Math\'ematique}, pages = {421--425}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {4}, year = {2021}, doi = {10.5802/crmath.184}, mrnumber = {4264325}, zbl = {07362163}, language = {en}, }
Mei Bai; Wenchang Chu. Further Equivalent Binomial Sums. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 421-425. doi : 10.5802/crmath.184. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.184/
[1] A generalization of an identity due to Kimura and Ruehr, Integers, Volume 18A (2018), a1 | MR | Zbl
[2] Two binomial identities of Ruehr revisited, Am. Math. Mon., Volume 126 (2019) no. 3, pp. 217-225 | DOI | MR | Zbl
[3] On Ruehr’s identities, Ars Comb., Volume 139 (2018), pp. 247-254 | MR | Zbl
[4] Seven equivalent binomial sums, Discrete Math., Volume 343 (2020) no. 2, 111691 | MR | Zbl
[5] Generating functions and combinatorial identities, Glas. Mat., III. Ser., Volume 33 (1998) no. 1, pp. 1-12 | MR | Zbl
[6] Some binomial convolution formulas, Fibonacci Q., Volume 40 (2002) no. 1, pp. 19-32 | MR | Zbl
[7] Logarithms of a binomial series: Extension of a series of Knuth, Math. Commun., Volume 24 (2019) no. 1, pp. 83-90 | MR | Zbl
[8] Advanced Combinatorics. The art of finite and infinite expansions, Reidel Publishing Company, 1974 (Translated from the French by J. W. Nienhuys) | Zbl
[9] Note on the convolution of binomial coefficients, J. Integer Seq., Volume 16 (2013) no. 7, 13.7.6 | MR | Zbl
[10] Some Remarks on a recent article by J.-P. Allouche (2019) (https://arxiv.org/abs/1903.09511) | Zbl
[11] Some generalizations of Vandermonde’s convolution, Am. Math. Mon., Volume 63 (1956) no. 2, pp. 84-91 | DOI | MR | Zbl
[12] Concrete Mathematics, Addison-Wesley Publishing Group, 1989 | Zbl
[13] Ruehr’s identities with two additional parameters, Integers, Volume 16 (2016), A30 | MR | Zbl
[14] Change of variable formula for definite integral, Am. Math. Mon., Volume 87 (1980) no. 4, pp. 307-308
[15] Observationes variae in Mathesin puram, Acta Helvetica, Volume 3 (1758) no. 1, pp. 128-168 (reprinted in his Opera Mathematica, volume 1, p. 16–51)
[16] Proofs of Ruehr’s identities, Integers, Volume 14 (2014), A10 | MR | Zbl
[17] Combinatorial Identities, John Wiley & Sons, 1968 | Zbl
Cité par Sources :
Commentaires - Politique