We prove essentially optimal bounds for norms of spectral projectors on thin spherical shells for the Laplacian on the cylinder
Accepté le :
Publié le :
Pierre Germain 1 ; Simon Myerson 2

@article{CRMATH_2022__360_G11_1257_0, author = {Pierre Germain and Simon Myerson}, title = {Bounds for spectral projectors on the {Euclidean} cylinder}, journal = {Comptes Rendus. Math\'ematique}, pages = {1257--1262}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.378}, language = {en}, }
Pierre Germain; Simon Myerson. Bounds for spectral projectors on the Euclidean cylinder. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1257-1262. doi : 10.5802/crmath.378. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.378/
[1] Global endpoint strichartz estimates for Schrödinger equations on the cylinder
[2] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II: The KdV-equation, Geom. Funct. Anal., Volume 3 (1993) no. 3, pp. 209-262 | DOI | MR | Zbl
[3] The proof of the
[4] Bounds for spectral projectors on tori (2021) (https://arxiv.org/abs/2104.13274v1)
[5] Fourier integrals in classical analysis, Cambridge Tracts in Mathematic, 105, Cambridge University Press, 1993 | DOI | Zbl
[6] On 2D nonlinear schrödinger equations with data on
Cité par Sources :
Commentaires - Politique