Comptes Rendus
Systèmes dynamiques
The beginning of the Lagrange spectrum of certain origamis of genus two
Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 475-479.

The initial portion of the Lagrange spectrum LB7 of certain square-tiled surfaces of genus two was described in details in the work of Hubert–Lelièvre–Marchese–Ulcigrai. In particular, they proved that the smallest element of LB7 is an isolated point ϕ1, but the second smallest value ϕ2 of LB7 is an accumulation point. Also, they conjectured that the portion LB7[ϕ2,η1) is a Cantor set for a specific value η1 and they asked about the continuity properties of the Hausdorff dimension of LB7(-,t) as a function of t<η1. In this note, we solve affirmatively these problems.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.65

Carlos Matheus 1

1 CMLS, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_4_475_0,
     author = {Carlos Matheus},
     title = {The beginning of the {Lagrange} spectrum of certain origamis of genus two},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {475--479},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {4},
     year = {2020},
     doi = {10.5802/crmath.65},
     language = {en},
}
TY  - JOUR
AU  - Carlos Matheus
TI  - The beginning of the Lagrange spectrum of certain origamis of genus two
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 475
EP  - 479
VL  - 358
IS  - 4
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.65
LA  - en
ID  - CRMATH_2020__358_4_475_0
ER  - 
%0 Journal Article
%A Carlos Matheus
%T The beginning of the Lagrange spectrum of certain origamis of genus two
%J Comptes Rendus. Mathématique
%D 2020
%P 475-479
%V 358
%N 4
%I Académie des sciences, Paris
%R 10.5802/crmath.65
%G en
%F CRMATH_2020__358_4_475_0
Carlos Matheus. The beginning of the Lagrange spectrum of certain origamis of genus two. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 475-479. doi : 10.5802/crmath.65. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.65/

[1] Pierre Arnoux Le codage du flot géodésique sur la surface modulaire, Enseign. Math., Volume 40 (1994) no. 1-2, pp. 29-48 | Zbl

[2] Aline Cerqueira; Carlos Matheus; Carlos G. Moreira Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra, J. Mod. Dyn., Volume 12 (2018), pp. 151-174 | DOI | MR | Zbl

[3] Pascal Hubert; Samuel Lelièvre Prime arithmetic Teichmüller discs in (2), Isr. J. Math., Volume 151 (2006), pp. 281-321 | DOI | Zbl

[4] Pascal Hubert; Samuel Lelièvre; Luca Marchese; Corinna Ulcigrai The Lagrange spectrum of some square-tiled surfaces, Isr. J. Math., Volume 225 (2018) no. 2, pp. 553-607 | DOI | MR | Zbl

[5] Pascal Hubert; Luca Marchese; Corinna Ulcigrai Lagrange spectra in Teichmüller dynamics via renormalization, Geom. Funct. Anal., Volume 25 (2015) no. 1, pp. 180-255 | DOI | Zbl

[6] Carlos Matheus; Carlos G. Moreira HD(ML)>0.353, Acta Arith., Volume 188 (2019) no. 2, pp. 183-208 | Zbl

[7] Carlos G. Moreira Geometric properties of the Markov and Lagrange spectra, Ann. Math., Volume 188 (2018) no. 1, pp. 145-170 | DOI | MR | Zbl

[8] Anton Zorich Flat surfaces, Frontiers in number theory, physics, and geometry I. On random matrices, zeta functions, and dynamical systems, Springer, 2006, pp. 403-437 | Zbl

Cité par Sources :

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: