Comptes Rendus
Géométrie algébrique
Indecomposable K 1 classes on a Surface and Membrane Integrals
Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 511-513.

Soit X une surface algébrique projective. Nous rappelons le groupe K, K 1,ind (2) (X) indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables.

Let X be a projective algebraic surface. We recall the K-group K 1,ind (2) (X) of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.69
Classification : 14C25, 14C30, 14C35

Xi Chen 1 ; James D. Lewis 1 ; Gregory Pearlstein 2

1 Department of Mathematics, 632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
2 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_4_511_0,
     author = {Xi Chen and James D. Lewis and Gregory Pearlstein},
     title = {Indecomposable $K_1$ classes on a {Surface} and {Membrane} {Integrals}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {511--513},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {4},
     year = {2020},
     doi = {10.5802/crmath.69},
     language = {en},
}
TY  - JOUR
AU  - Xi Chen
AU  - James D. Lewis
AU  - Gregory Pearlstein
TI  - Indecomposable $K_1$ classes on a Surface and Membrane Integrals
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 511
EP  - 513
VL  - 358
IS  - 4
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.69
LA  - en
ID  - CRMATH_2020__358_4_511_0
ER  - 
%0 Journal Article
%A Xi Chen
%A James D. Lewis
%A Gregory Pearlstein
%T Indecomposable $K_1$ classes on a Surface and Membrane Integrals
%J Comptes Rendus. Mathématique
%D 2020
%P 511-513
%V 358
%N 4
%I Académie des sciences, Paris
%R 10.5802/crmath.69
%G en
%F CRMATH_2020__358_4_511_0
Xi Chen; James D. Lewis; Gregory Pearlstein. Indecomposable $K_1$ classes on a Surface and Membrane Integrals. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 511-513. doi : 10.5802/crmath.69. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.69/

[1] Xi Chen; Charles Doran; Matt Kerr; James D. Lewis Normal Functions, Picard-Fuchs Equations, and Elliptic Fibrations on K3 Surfaces, J. Reine Angew. Math., Volume 721 (2016), pp. 43-80 | MR | Zbl

[2] Rob de Jeu; James D. Lewis Beilinson’s Hodge conjecture for smooth varieties, with an appendix by Masanori Asakura, J. K-Theory, Volume 11 (2013) no. 2, pp. 243-282 | DOI | Zbl

[3] Matt Kerr; James D. Lewis; Stefan Müller-Stach The Abel-Jacobi map for higher Chow groups, Compos. Math., Volume 142 (2006) no. 2, pp. 374-396 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique