Soit une surface algébrique projective. Nous rappelons le groupe , indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables.
Let be a projective algebraic surface. We recall the -group of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes.
Accepté le :
Publié le :
Xi Chen 1 ; James D. Lewis 1 ; Gregory Pearlstein 2
@article{CRMATH_2020__358_4_511_0, author = {Xi Chen and James D. Lewis and Gregory Pearlstein}, title = {Indecomposable $K_1$ classes on a {Surface} and {Membrane} {Integrals}}, journal = {Comptes Rendus. Math\'ematique}, pages = {511--513}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.69}, language = {en}, }
TY - JOUR AU - Xi Chen AU - James D. Lewis AU - Gregory Pearlstein TI - Indecomposable $K_1$ classes on a Surface and Membrane Integrals JO - Comptes Rendus. Mathématique PY - 2020 SP - 511 EP - 513 VL - 358 IS - 4 PB - Académie des sciences, Paris DO - 10.5802/crmath.69 LA - en ID - CRMATH_2020__358_4_511_0 ER -
Xi Chen; James D. Lewis; Gregory Pearlstein. Indecomposable $K_1$ classes on a Surface and Membrane Integrals. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 511-513. doi : 10.5802/crmath.69. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.69/
[1] Normal Functions, Picard-Fuchs Equations, and Elliptic Fibrations on Surfaces, J. Reine Angew. Math., Volume 721 (2016), pp. 43-80 | MR | Zbl
[2] Beilinson’s Hodge conjecture for smooth varieties, with an appendix by Masanori Asakura, J. -Theory, Volume 11 (2013) no. 2, pp. 243-282 | DOI | Zbl
[3] The Abel-Jacobi map for higher Chow groups, Compos. Math., Volume 142 (2006) no. 2, pp. 374-396 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique