[Approximations de Wong–Zakai et théorèmes de support pour les SDEs sous conditions de Lyapunov]
In this paper, we establish the Stroock–Varadhan type support theorems for stochastic differential equations (SDEs) under Lyapunov conditions, which improve the existing results in the literature where the coefficients of the SDEs are required to be globally Lipschitz. Our conditions are mild to include many important models, e.g. Threshold Ornstein–Uhlenbeck process, stochastic SIR model, stochastic Lotka–Volterra systems, stochastic Duffing–van der Pol oscillator model, which have polynomial coefficients. To obtain the support theorem, a localizing procedure plays an important role.
Dans cet article, nous établissons les théorèmes de support de type Stroock–Varadhan pour des équations différentielles stochastiques (EDS) sous conditions de Lyapunov, qui améliorent les résultats existants dans la littérature où les coefficients des EDS doivent être globalement Lipschitz. Nos conditions sont faibles et permettent d’inclure de nombreux modèles importants, par exemple le processus de Ornstein–Uhlenbeck avec seuillage, le modèle stochastique SIR, les systèmes stochastiques de Lotka–Volterra, le modèle stochastique de l’oscillateur de Duffing–van der Pol, qui ont des coefficients polynomiaux. Pour obtenir le théorème de support, une procédure de localisation joue un rôle important.
Accepté le :
Publié le :
Mots-clés : Approximation de Wong–Zakai, théorème de support, fonctions localement lipschitziennes, condition de Lyapunov
Qi Li 1 ; Jianliang Zhai 1 ; Tusheng Zhang 2

@article{CRMATH_2025__363_G7_617_0, author = {Qi Li and Jianliang Zhai and Tusheng Zhang}, title = {Wong{\textendash}Zakai approximations and support theorems for {SDEs} under {Lyapunov} conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {617--628}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.701}, language = {en}, }
TY - JOUR AU - Qi Li AU - Jianliang Zhai AU - Tusheng Zhang TI - Wong–Zakai approximations and support theorems for SDEs under Lyapunov conditions JO - Comptes Rendus. Mathématique PY - 2025 SP - 617 EP - 628 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.701 LA - en ID - CRMATH_2025__363_G7_617_0 ER -
Qi Li; Jianliang Zhai; Tusheng Zhang. Wong–Zakai approximations and support theorems for SDEs under Lyapunov conditions. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 617-628. doi : 10.5802/crmath.701. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.701/
[1] On the support of Wiener functionals, Asymptotic problems in probability theory: Wiener functionals and asymptotics (Sanda/Kyoto, 1990) (Pitman Research Notes in Mathematics Series), Volume 284, Longman Scientific & Technical, 1993, pp. 3-34 | MR | Zbl
[2] Population biology of infectious diseases: Part I, Nature, Volume 280 (1979), pp. 361-367 | DOI
[3] Normes hölderiennes et support des diffusions, C. R. Math., Volume 316 (1993) no. 3, pp. 283-286 | MR | Zbl
[4] Hölder norms and the support theorem for diffusions, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 30 (1994) no. 3, pp. 415-436 | Numdam | MR | Zbl
[5] Numerical methods for stochastic delay differential equations via the Wong–Zakai approximation, SIAM J. Sci. Comput., Volume 37 (2015) no. 1, p. A295-A318 | DOI | MR | Zbl
[6] Decomposition formula and stationary measures for stochastic Lotka–Volterra system with applications to turbulent convection, J. Math. Pures Appl. (9), Volume 125 (2019), pp. 43-93 | DOI | MR | Zbl
[7] On the support of solutions to stochastic differential equations with path-dependent coefficients, Stochastic Processes Appl., Volume 130 (2020) no. 5, pp. 2639-2674 | DOI | MR | Zbl
[8] Local Lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations (2013) | arXiv
[9] On the approximation of stochastic differential equation and on Stroock–Varadhan’s support theorem, Comput. Math. Appl., Volume 19 (1990) no. 1, pp. 65-70 | DOI | MR | Zbl
[10] Evolutionary games and population dynamics, Cambridge University Press, 1998, xxviii+323 pages | DOI | MR | Zbl
[11] Support characterization for regular path-dependent stochastic Volterra integral equations, Electron. J. Probab., Volume 26 (2021), 29, 29 pages | DOI | MR | Zbl
[12] Implicit Milstein method for stochastic differential equations via the Wong–Zakai approximation, Numer. Algorithms, Volume 79 (2018) no. 2, pp. 357-374 | DOI | MR | Zbl
[13] On Wong–Zakai approximation of stochastic differential equations, J. Multivariate Anal., Volume 13 (1983) no. 4, pp. 605-611 | DOI | MR | Zbl
[14] Stochastic differential equations and models of random processes, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, University of California Press, 1972, pp. 263-294 | MR | Zbl
[15] A simple proof of the support theorem for diffusion processes, Séminaire de Probabilités, XXVIII (Lecture Notes in Mathematics), Volume 1583, Springer, 1994, pp. 36-48 | DOI | Numdam | MR | Zbl
[16] Approximation theorem on stochastic differential equations, Proceedings of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976) (A Wiley-Interscience Publication), John Wiley & Sons, 1978, pp. 283-296 | MR | Zbl
[17] On approximate continuity and the support of reflected stochastic differential equations, Ann. Probab., Volume 44 (2016) no. 3, pp. 2064-2116 | DOI | MR | Zbl
[18] Wong–Zakai method for stochastic differential equations in engineering, Therm. Sci., Volume 25 (2021), pp. 131-142 | DOI
[19] Support theorem for jump processes, Stochastic Processes Appl., Volume 89 (2000) no. 1, pp. 1-30 | DOI | MR | Zbl
[20] On the support of diffusion processes with applications to the strong maximum principle, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory, University of California Press, 1972, pp. 333-359 | MR | Zbl
[21] Large deviation principles for SDEs under locally weak monotonicity conditions, Bernoulli, Volume 30 (2024) no. 1, pp. 332-345 | DOI | MR | Zbl
[22] On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Stat., Volume 36 (1965), pp. 1560-1564 | DOI | MR | Zbl
[23] On the relation between ordinary and stochastic differential equations, Int. J. Eng. Sci., Volume 3 (1965), pp. 213-229 | DOI | MR | Zbl
[24] Wong–Zakai approximations and support theorems for stochastic McKean–Vlasov equations, Forum Math., Volume 34 (2022) no. 6, pp. 1411-1432 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier