Comptes Rendus
Article de recherche - Probabilités
Reflected BSDEs with default time and irregular obstacles
[EDSRs réfléchies avec temps de défaut et obstacles irréguliers]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 223-233.

Dans cette note, nous étudions les équations différentielles stochastiques rétrogrades réfléchies avec un temps de défaut, où l’obstacle de réflexion n’est pas nécessairement continu à droite. Nous établissons l’existence et l’unicité d’une solution pour de telles équations sous une condition de Lipschitz stochastique sur le coefficient.

In this note, we study reflected backward stochastic differential equations with a default time, where the reflecting obstacle is not necessarily right-continuous. We establish the existence and uniqueness of a solution for such equations under a stochastic Lipschitz condition on the coefficient.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.713
Classification : 60H05, 60H30, 60G40, 91G80
Keywords: Reflected BSDEs, irregular obstacle, stochastic Lipschitz coefficient, Mertens decomposition
Mots-clés : EDSRs réfléchies, obstacle irrégulier, coefficient de Lipschitz stochastique, décomposition de Mertens

Badr Elmansouri 1

1 Laboratory of Analysis and Applied Mathematics (LAMA), Faculty of Sciences Agadir, Ibn Zohr University, BP 8106-Cité Dakhla, 80000, Agadir, Morocco
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G3_223_0,
     author = {Badr Elmansouri},
     title = {Reflected {BSDEs} with default time and irregular obstacles},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {223--233},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.713},
     language = {en},
}
TY  - JOUR
AU  - Badr Elmansouri
TI  - Reflected BSDEs with default time and irregular obstacles
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 223
EP  - 233
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.713
LA  - en
ID  - CRMATH_2025__363_G3_223_0
ER  - 
%0 Journal Article
%A Badr Elmansouri
%T Reflected BSDEs with default time and irregular obstacles
%J Comptes Rendus. Mathématique
%D 2025
%P 223-233
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.713
%G en
%F CRMATH_2025__363_G3_223_0
Badr Elmansouri. Reflected BSDEs with default time and irregular obstacles. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 223-233. doi : 10.5802/crmath.713. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.713/

[1] Khadija Akdim; Mouna Haddadi; Youssef Ouknine Strong Snell envelopes and RBSDEs with regulated trajectories when the barrier is a semimartingale, Stochastics, Volume 92 (2020) no. 3, pp. 335-355 | DOI | MR | Zbl

[2] Brahim Baadi; Youssef Ouknine Reflected BSDEs when the obstacle is not right-continuous in a general filtration, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 14 (2017), pp. 201-218 | DOI | MR | Zbl

[3] Pauline Barrieu; Nicole El Karoui Inf-convolution of risk measures and optimal risk transfer, Finance Stoch., Volume 9 (2005) no. 2, pp. 269-298 | DOI | MR | Zbl

[4] Tomasz R. Bielecki; Monique Jeanblanc; Marek Rutkowski Hedging of defaultable claims, Paris-Princeton Lecture on Mathematical Finance 2003 (Lecture Notes in Mathematics), Volume 1847, Springer, 2004, pp. 1-132 | DOI | MR | Zbl

[5] Tomasz R. Bielecki; Monique Jeanblanc; Marek Rutkowski PDE approach to valuation and hedging of credit derivatives, Quant. Finance, Volume 5 (2005) no. 3, pp. 257-270 | DOI | MR | Zbl

[6] Tomasz R. Bielecki; Monique Jeanblanc; Marek Rutkowski Introduction to mathematics of credit risk modeling (2007), 81 pages https://math.maths.univ-evry.fr/jeanblanc/conferences/BJR-CIMPA.pdf (Lecture notes from the conference Stochastic Models in Mathematical Finance, CIMPA–UNESCO–MOROCCO School, Marrakech, Morocco, April 9–20, 2007)

[7] Siham Bouhadou; Youssef Ouknine Reflected BSDEs when the obstacle is predictable and nonlinear optimal stopping problem, Stoch. Dyn., Volume 21 (2021) no. 8, 2150049, 40 pages | DOI | Zbl

[8] Claude Dellacherie; Paul-André Meyer Probabilités et Potentiel, Chap. I–IV, Publications de l’Institut de Mathématique de l’Université de Strasbourg, 15, Hermann, 1975, x+291 pages | MR | Zbl

[9] Claude Dellacherie; Paul-André Meyer Probabilités et Potentiel, Théorie des Martingales, Chap V–VIII, Publications de l’Institut de Mathématique de l’Université de Strasbourg, 17, Hermann, 1980, xviii+476 pages | MR

[10] Roxana Dumitrescu; Miryana Grigorova; Marie-Claire Quenez; Agnès Sulem BSDEs with default jump, Computation and combinatorics in dynamics, stochastics and control (Elena Celledoni; Giulia Di Nunno; Kurusch Ebrahimi-Fard; Hans Zanna Munthe-Kaas, eds.) (Abel Symposia), Volume 13, Springer (2018), pp. 233-263 | DOI | Zbl

[11] Roxana Dumitrescu; Marie-Claire Quenez; Agnès Sulem American options in an imperfect complete market with default, ESAIM, Proc. Surv., Volume 64 (2018), pp. 93-110 | DOI | Zbl

[12] Nicole El Karoui; Monique Jeanblanc; Ying Jiao What happens after a default: the conditional density approach, Stochastic Processes Appl., Volume 120 (2010) no. 7, pp. 1011-1032 | DOI | MR | Zbl

[13] Nicole El Karoui; Christophe Kapoudjian; Etienne Pardoux; Shige Peng; Marie-Claire Quenez Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s, Ann. Probab., Volume 25 (1997) no. 2, pp. 702-737 | MR | Zbl

[14] Nicole El Karoui; Shige Peng; Marie-Claire Quenez Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997) no. 1, pp. 1-71 | DOI | MR | Zbl

[15] Leonid I. Gal’čuk Decomposition of optional supermartingales, Math. USSR, Sb., Volume 43 (1982) no. 2, pp. 145-158 | DOI | Zbl

[16] Miryana Grigorova; Peter Imkeller; Elias Offen; Youssef Ouknine; Marie-Claire Quenez Reflected BSDEs when the obstacle is not right-continuous and optimal stopping, Ann. Appl. Probab., Volume 27 (2017) no. 5, pp. 3153-3188 | DOI | MR | Zbl

[17] Said Hamadene Reflected BSDE’s with discontinuous barrier and application, Stochastics Stochastics Rep., Volume 74 (2002) no. 3-4, pp. 571-596 | DOI | MR | Zbl

[18] Sheng Wu He; Jia Gang Wang; Jia An Yan Semimartingale theory and stochastic calculus, CRC Press, 1992, xiv+546 pages | MR

[19] Jean Jacod; Albert N. Shiryaev Limit theorems for stochastic processes, Grundlehren der Mathematischen Wissenschaften, 288, Springer, 2003, xx+661 pages | DOI | MR

[20] Robert A Jarrow; Fan Yu Counterparty risk and the pricing of defaultable securities, J. Finance, Volume 56 (2001) no. 5, pp. 1765-1799 | DOI

[21] Olav Kallenberg Foundations of modern probability, Probability Theory and Stochastic Modelling, 99, Springer, 2021, xii+946 pages | DOI | MR

[22] Tomasz Klimsiak; Maurycy Rzymowski; Leszek Słomiński Reflected BSDEs with regulated trajectories, Stochastic Processes Appl., Volume 129 (2019) no. 4, pp. 1153-1184 | DOI | MR | Zbl

[23] Magdalena Kobylanski; Marie-Claire Quenez Optimal stopping time problem in a general framework, Electron. J. Probab., Volume 17 (2012), 72, 28 pages | DOI | MR | Zbl

[24] Shigeo Kusuoka A remark on default risk models, Symposium on Mathematical analysis in economic theory, Keio University, Tokyo, Japan, October 4-5, 1997 (Advances in Mathematical Economics), Volume 1, Springer, 1999, pp. 69-82 | DOI | MR | Zbl

[25] J-P Lepeltier; Mingyu Xu Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier, Stat. Probab. Lett., Volume 75 (2005) no. 1, pp. 58-66 | DOI | MR | Zbl

[26] Roger Mansuy; Marc Yor Random times and enlargements of filtrations in a Brownian setting, Lecture Notes in Mathematics, 1873, Springer, 2006, xiv+158 pages | MR

[27] Mohamed Marzougue; Mohamed El Otmani Predictable solution for reflected BSDEs when the obstacle is not right-continuous, Random Oper. Stoch. Equ., Volume 28 (2020) no. 4, pp. 269-279 | DOI | MR | Zbl

[28] Etienne Pardoux; Shige Peng Adapted solution of a backward stochastic differential equation, Syst. Control Lett., Volume 14 (1990) no. 1, pp. 55-61 | DOI | MR

[29] Shige Peng; Xiaoming Xu BSDEs with random default time and their applications to default risk (2009) | arXiv

[30] Shige Peng; Xiaoming Xu BSDEs with random default time and related zero-sum stochastic differential games, C. R. Math., Volume 348 (2010) no. 3-4, pp. 193-198 | DOI | Numdam | Zbl

[31] Philip E. Protter Stochastic integration and differential equations, Applications of Mathematics, 21, Springer, 2004, xiv+415 pages | MR

[32] Richard Rouge; Nicole El Karoui Pricing via utility maximization and entropy, Math. Finance, Volume 10 (2000) no. 2, pp. 259-276 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique