[EDSRs réfléchies avec temps de défaut et obstacles irréguliers]
Dans cette note, nous étudions les équations différentielles stochastiques rétrogrades réfléchies avec un temps de défaut, où l’obstacle de réflexion n’est pas nécessairement continu à droite. Nous établissons l’existence et l’unicité d’une solution pour de telles équations sous une condition de Lipschitz stochastique sur le coefficient.
In this note, we study reflected backward stochastic differential equations with a default time, where the reflecting obstacle is not necessarily right-continuous. We establish the existence and uniqueness of a solution for such equations under a stochastic Lipschitz condition on the coefficient.
Révisé le :
Accepté le :
Publié le :
Keywords: Reflected BSDEs, irregular obstacle, stochastic Lipschitz coefficient, Mertens decomposition
Mots-clés : EDSRs réfléchies, obstacle irrégulier, coefficient de Lipschitz stochastique, décomposition de Mertens
Badr Elmansouri 1

@article{CRMATH_2025__363_G3_223_0, author = {Badr Elmansouri}, title = {Reflected {BSDEs} with default time and irregular obstacles}, journal = {Comptes Rendus. Math\'ematique}, pages = {223--233}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.713}, language = {en}, }
Badr Elmansouri. Reflected BSDEs with default time and irregular obstacles. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 223-233. doi : 10.5802/crmath.713. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.713/
[1] Strong Snell envelopes and RBSDEs with regulated trajectories when the barrier is a semimartingale, Stochastics, Volume 92 (2020) no. 3, pp. 335-355 | DOI | MR | Zbl
[2] Reflected BSDEs when the obstacle is not right-continuous in a general filtration, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 14 (2017), pp. 201-218 | DOI | MR | Zbl
[3] Inf-convolution of risk measures and optimal risk transfer, Finance Stoch., Volume 9 (2005) no. 2, pp. 269-298 | DOI | MR | Zbl
[4] Hedging of defaultable claims, Paris-Princeton Lecture on Mathematical Finance 2003 (Lecture Notes in Mathematics), Volume 1847, Springer, 2004, pp. 1-132 | DOI | MR | Zbl
[5] PDE approach to valuation and hedging of credit derivatives, Quant. Finance, Volume 5 (2005) no. 3, pp. 257-270 | DOI | MR | Zbl
[6] Introduction to mathematics of credit risk modeling (2007), 81 pages https://math.maths.univ-evry.fr/jeanblanc/conferences/BJR-CIMPA.pdf (Lecture notes from the conference Stochastic Models in Mathematical Finance, CIMPA–UNESCO–MOROCCO School, Marrakech, Morocco, April 9–20, 2007)
[7] Reflected BSDEs when the obstacle is predictable and nonlinear optimal stopping problem, Stoch. Dyn., Volume 21 (2021) no. 8, 2150049, 40 pages | DOI | Zbl
[8] Probabilités et Potentiel, Chap. I–IV, Publications de l’Institut de Mathématique de l’Université de Strasbourg, 15, Hermann, 1975, x+291 pages | MR | Zbl
[9] Probabilités et Potentiel, Théorie des Martingales, Chap V–VIII, Publications de l’Institut de Mathématique de l’Université de Strasbourg, 17, Hermann, 1980, xviii+476 pages | MR
[10] BSDEs with default jump, Computation and combinatorics in dynamics, stochastics and control (Elena Celledoni; Giulia Di Nunno; Kurusch Ebrahimi-Fard; Hans Zanna Munthe-Kaas, eds.) (Abel Symposia), Volume 13, Springer (2018), pp. 233-263 | DOI | Zbl
[11] American options in an imperfect complete market with default, ESAIM, Proc. Surv., Volume 64 (2018), pp. 93-110 | DOI | Zbl
[12] What happens after a default: the conditional density approach, Stochastic Processes Appl., Volume 120 (2010) no. 7, pp. 1011-1032 | DOI | MR | Zbl
[13] Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s, Ann. Probab., Volume 25 (1997) no. 2, pp. 702-737 | MR | Zbl
[14] Backward stochastic differential equations in finance, Math. Finance, Volume 7 (1997) no. 1, pp. 1-71 | DOI | MR | Zbl
[15] Decomposition of optional supermartingales, Math. USSR, Sb., Volume 43 (1982) no. 2, pp. 145-158 | DOI | Zbl
[16] Reflected BSDEs when the obstacle is not right-continuous and optimal stopping, Ann. Appl. Probab., Volume 27 (2017) no. 5, pp. 3153-3188 | DOI | MR | Zbl
[17] Reflected BSDE’s with discontinuous barrier and application, Stochastics Stochastics Rep., Volume 74 (2002) no. 3-4, pp. 571-596 | DOI | MR | Zbl
[18] Semimartingale theory and stochastic calculus, CRC Press, 1992, xiv+546 pages | MR
[19] Limit theorems for stochastic processes, Grundlehren der Mathematischen Wissenschaften, 288, Springer, 2003, xx+661 pages | DOI | MR
[20] Counterparty risk and the pricing of defaultable securities, J. Finance, Volume 56 (2001) no. 5, pp. 1765-1799 | DOI
[21] Foundations of modern probability, Probability Theory and Stochastic Modelling, 99, Springer, 2021, xii+946 pages | DOI | MR
[22] Reflected BSDEs with regulated trajectories, Stochastic Processes Appl., Volume 129 (2019) no. 4, pp. 1153-1184 | DOI | MR | Zbl
[23] Optimal stopping time problem in a general framework, Electron. J. Probab., Volume 17 (2012), 72, 28 pages | DOI | MR | Zbl
[24] A remark on default risk models, Symposium on Mathematical analysis in economic theory, Keio University, Tokyo, Japan, October 4-5, 1997 (Advances in Mathematical Economics), Volume 1, Springer, 1999, pp. 69-82 | DOI | MR | Zbl
[25] Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier, Stat. Probab. Lett., Volume 75 (2005) no. 1, pp. 58-66 | DOI | MR | Zbl
[26] Random times and enlargements of filtrations in a Brownian setting, Lecture Notes in Mathematics, 1873, Springer, 2006, xiv+158 pages | MR
[27] Predictable solution for reflected BSDEs when the obstacle is not right-continuous, Random Oper. Stoch. Equ., Volume 28 (2020) no. 4, pp. 269-279 | DOI | MR | Zbl
[28] Adapted solution of a backward stochastic differential equation, Syst. Control Lett., Volume 14 (1990) no. 1, pp. 55-61 | DOI | MR
[29] BSDEs with random default time and their applications to default risk (2009) | arXiv
[30] BSDEs with random default time and related zero-sum stochastic differential games, C. R. Math., Volume 348 (2010) no. 3-4, pp. 193-198 | DOI | Numdam | Zbl
[31] Stochastic integration and differential equations, Applications of Mathematics, 21, Springer, 2004, xiv+415 pages | MR
[32] Pricing via utility maximization and entropy, Math. Finance, Volume 10 (2000) no. 2, pp. 259-276 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique