[Réflexions et quotients dans les groupes de Coxeter]
Nous présentons une formule reliant l’ensemble des descentes gauches d’un élément d’un groupe de Coxeter aux ensembles des descentes gauches de ses projections sur les quotients maximaux indexés par les descentes droites simples. Cette formule est un exemple d’un résultat général impliquant les quotients et les descentes.
We present a formula relating the set of left descents of an element of a Coxeter group with the sets of left descents of its projections on maximal quotients indexed by simple right descents. This formula is an instance of a general result involving quotients and descents.
Révisé le :
Accepté le :
Publié le :
Paolo Sentinelli 1

@article{CRMATH_2025__363_G3_235_0, author = {Paolo Sentinelli}, title = {Reflections and quotients in {Coxeter} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {235--239}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.714}, language = {en}, }
Paolo Sentinelli. Reflections and quotients in Coxeter groups. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 235-239. doi : 10.5802/crmath.714. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.714/
[1] Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, 2005, xiv+363 pages | MR | Zbl
[2] On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan–Lusztig polynomials, J. Algebra, Volume 111 (1987) no. 2, pp. 483-506 | DOI | MR | Zbl
[3] On the weak order of Coxeter groups, Can. J. Math., Volume 71 (2019) no. 2, pp. 299-336 | DOI | MR | Zbl
[4] On inversion sets and the weak order in Coxeter groups, Eur. J. Comb., Volume 55 (2016), pp. 1-19 | DOI | MR | Zbl
[5] Linearly shellable complexes https://link.springer.com/article/10.1007/s11083-024-09688-4 (To appear in Order)
Cité par Sources :
Commentaires - Politique