Comptes Rendus
Article de recherche - Algèbre
Azumaya locus over certain quantum symplectic spaces II
[Lieu d’Azumaya sur certains espaces symplectiques quantiques II]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 383-405.

This article undertakes an exploration of a particular variant of multiparameter quantum symplectic algebras, focusing specifically on the quantum Heisenberg algebra at the roots of unity. In this context, the algebra undergoes a transformation into Polynomial Identity algebra, where the dimensions of the simple modules are restricted by their PI degree. We conduct an extensive examination of all possible maximal dimensional simple modules associated with this algebra. Additionally, we present a condition that is both necessary and sufficient for the attainment of maximal dimensional simple modules, thereby facilitating the classification of its Azumaya locus.

Cet article explore une variante particulière des algèbres symplectiques quantiques multiparamétriques, en se concentrant spécifiquement sur l’algèbre de Heisenberg quantique aux racines de l’unité. Dans ce contexte, l’algèbre subit une transformation en algèbre à identité polynomiale, où les dimensions des modules simples sont restreintes par leur degré PI. Nous effectuons un examen approfondi de tous les modules simples de dimension maximale possibles associés à cette algèbre. En outre, nous présentons une condition qui est à la fois nécessaire et suffisante pour l’obtention de modules simples de dimension maximale, facilitant ainsi la classification de son lieu d’Azumaya.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.723
Classification : 16D60, 16D70, 16S85
Keywords: Quantum Heisenberg algebra, polynomial identity algebra, Smith normal form, eigenvalue analysis, simple modules, Azumaya locus
Mots-clés : Algèbre de Heisenberg quantique, algèbre à identité polynomiale, forme normale de Smith, analyse des valeurs propres, modules simples, lieu d’Azumaya

Snehashis Mukherjee 1

1 Stat-Math Unit, Indian Statistical Institute, Bangalore Center, 8th Mile, Mysore Rd, RVCE Post, Bengaluru, Karnataka 560059, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G4_383_0,
     author = {Snehashis Mukherjee},
     title = {Azumaya locus over certain quantum symplectic spaces {II}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {383--405},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.723},
     language = {en},
}
TY  - JOUR
AU  - Snehashis Mukherjee
TI  - Azumaya locus over certain quantum symplectic spaces II
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 383
EP  - 405
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.723
LA  - en
ID  - CRMATH_2025__363_G4_383_0
ER  - 
%0 Journal Article
%A Snehashis Mukherjee
%T Azumaya locus over certain quantum symplectic spaces II
%J Comptes Rendus. Mathématique
%D 2025
%P 383-405
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.723
%G en
%F CRMATH_2025__363_G4_383_0
Snehashis Mukherjee. Azumaya locus over certain quantum symplectic spaces II. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 383-405. doi : 10.5802/crmath.723. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.723/

[1] Vladimir V. Bavula Generalized Weyl algebras and their representations, St. Petersbg. Math. J., Volume 4 (1992) no. 1, pp. 71-92 | MR | Zbl

[2] Vladimir V. Bavula Simple D[X,Y;σ,a]-modules, Ukr. Mat. Zh., Volume 44 (1992) no. 12, pp. 1628-1644 | DOI | Zbl

[3] Vladimir V. Bavula Global dimension of generalized Weyl algebras, Representation theory of algebras (Cocoyoc, 1994) (CMS Conference Proceedings), American Mathematical Society, 1996, pp. 81-107 | MR | Zbl

[4] Vladimir V. Bavula The simple modules of the Ore extensions with coefficients from a Dedekind ring, Commun. Algebra, Volume 27 (1999) no. 6, pp. 2665-2699 | DOI | MR | Zbl

[5] Vladimir V. Bavula; Tao Lu The prime spectrum and simple modules over the quantum spatial ageing algebra, Algebr. Represent. Theory, Volume 19 (2016) no. 5, pp. 1109-1133 | DOI | MR | Zbl

[6] Vladimir V. Bavula; Tao Lu The quantum Euclidean algebra and its prime spectrum, Isr. J. Math., Volume 219 (2017) no. 2, pp. 929-958 | DOI | MR | Zbl

[7] Vladimir V. Bavula; Tao Lu Torsion simple modules over the quantum spatial ageing algebra, Commun. Algebra, Volume 45 (2017) no. 10, pp. 4166-4189 | DOI | MR | Zbl

[8] Vladimir V. Bavula; Tao Lu The prime spectrum of the algebra 𝕂q[X,Y]×Uq(𝔰𝔩2) and a classification of simple weight modules, J. Noncommut. Geom., Volume 12 (2018) no. 3, pp. 889-946 | DOI | MR | Zbl

[9] Vladimir V. Bavula; Freddy M. J. Van Oystaeyen The simple modules of certain generalized crossed products, J. Algebra, Volume 194 (1997) no. 2, pp. 521-566 | DOI | MR | Zbl

[10] Kenneth Alexander Brown; Kenneth R. Goodearl Lectures on algebraic quantum groups, Advanced Courses in Mathematics – CRM Barcelona, Birkhäuser, 2002, x+348 pages | DOI | MR

[11] Kenneth Alexander Brown; Milen Tchernev Yakimov Azumaya loci and discriminant ideals of PI algebras, Adv. Math., Volume 340 (2018), pp. 1219-1255 | DOI | MR | Zbl

[12] Corrado De Concini; Victor G. Kac; Claudio Procesi Quantum coadjoint action, J. Am. Math. Soc., Volume 5 (1992) no. 1, pp. 151-189 | DOI | MR | Zbl

[13] Corrado De Concini; Claudio Procesi Quantum groups, D-modules, representation theory, and quantum groups (Venice, 1992) (Lecture Notes in Mathematics), Volume 1565, Springer, 1993, pp. 31-140 | DOI | MR | Zbl

[14] Lyudvig Dmitrievich Faddeev; Nikolai Yu. Reshetikhin; Leon A. Takhtajan Quantization of Lie groups and Lie algebras, Algebraic analysis, Vol. I, Academic Press Inc., 1988, pp. 129-139 | MR | Zbl

[15] José Gómez-Torrecillas; Laiachi El Kaoutit Prime and primitive ideals of a class of iterated skew polynomial rings, J. Algebra, Volume 244 (2001) no. 1, pp. 186-216 | DOI | MR | Zbl

[16] José Gómez-Torrecillas; Laiachi El Kaoutit; L’Moufadal Benyakoub Prime ideals of the coordinate ring of quantum symplectic space, Commun. Algebra, Volume 29 (2001) no. 7, pp. 3179-3197 | DOI | MR | Zbl

[17] Heidi Haynal PI degree parity in q-skew polynomial rings., J. Algebra, Volume 319 (2008) no. 10, pp. 4199-4221 | DOI | MR | Zbl

[18] Karen L. Horton The prime and primitive spectra of multiparameter quantum symplectic and Euclidean spaces., Commun. Algebra, Volume 31 (2003) no. 10, pp. 4713-4743 | DOI | MR | Zbl

[19] Hans Plesner Jakobsen; Hechun Zhang Quantized Heisenberg space, Algebr. Represent. Theory, Volume 3 (2000) no. 2, pp. 151-174 | DOI | MR | Zbl

[20] David A. Jordan Finite-dimensional simple modules over certain iterated skew polynomial rings, J. Pure Appl. Algebra, Volume 98 (1995) no. 1, pp. 45-55 | DOI | MR | Zbl

[21] Leonid I. Korogodsky; Leonid Lʹvovich Vaksman Quantum G-spaces and Heisenberg algebra, Quantum groups (Leningrad, 1990) (Lecture Notes in Mathematics), Volume 1510, Springer, 1992, pp. 56-66 | DOI | MR

[22] André Leroy; Jerzy Matczuk On q-skew iterated Ore extensions satisfying a polynomial identity, J. Algebra Appl., Volume 10 (2011) no. 4, pp. 771-781 | DOI | MR | Zbl

[23] John Coulter McConnell; J. Chris Robson Noncommutative Noetherian rings, Graduate Studies in Mathematics, 30, American Mathematical Society, 2001, xx+636 pages | DOI | MR

[24] Snehashis Mukherjee The Azumaya locus of certain quantum symplectic spaces, Commun. Algebra, Volume 52 (2024) no. 5, pp. 2127-2137 | DOI | MR | Zbl

[25] Sei-Qwon Oh Primitive ideals of the coordinate ring of quantum symplectic space, J. Algebra, Volume 174 (1995) no. 2, pp. 531-552 | DOI | MR | Zbl

[26] Sei-Qwon Oh Catenarity in a class of iterated skew polynomial rings, Commun. Algebra, Volume 25 (1997) no. 1, pp. 37-49 | DOI | MR | Zbl

[27] Alexandra Rogers Representations of quantum nilpotent algebras at roots of unity, and their completely prime quotients, Ph. D. Thesis, University of Kent (UK) (2019) https://kar.kent.ac.uk/id/eprint/73049

Cité par Sources :

Commentaires - Politique