[Lieu d’Azumaya sur certains espaces symplectiques quantiques II]
This article undertakes an exploration of a particular variant of multiparameter quantum symplectic algebras, focusing specifically on the quantum Heisenberg algebra at the roots of unity. In this context, the algebra undergoes a transformation into Polynomial Identity algebra, where the dimensions of the simple modules are restricted by their PI degree. We conduct an extensive examination of all possible maximal dimensional simple modules associated with this algebra. Additionally, we present a condition that is both necessary and sufficient for the attainment of maximal dimensional simple modules, thereby facilitating the classification of its Azumaya locus.
Cet article explore une variante particulière des algèbres symplectiques quantiques multiparamétriques, en se concentrant spécifiquement sur l’algèbre de Heisenberg quantique aux racines de l’unité. Dans ce contexte, l’algèbre subit une transformation en algèbre à identité polynomiale, où les dimensions des modules simples sont restreintes par leur degré PI. Nous effectuons un examen approfondi de tous les modules simples de dimension maximale possibles associés à cette algèbre. En outre, nous présentons une condition qui est à la fois nécessaire et suffisante pour l’obtention de modules simples de dimension maximale, facilitant ainsi la classification de son lieu d’Azumaya.
Révisé le :
Accepté le :
Publié le :
Keywords: Quantum Heisenberg algebra, polynomial identity algebra, Smith normal form, eigenvalue analysis, simple modules, Azumaya locus
Mots-clés : Algèbre de Heisenberg quantique, algèbre à identité polynomiale, forme normale de Smith, analyse des valeurs propres, modules simples, lieu d’Azumaya
Snehashis Mukherjee 1

@article{CRMATH_2025__363_G4_383_0, author = {Snehashis Mukherjee}, title = {Azumaya locus over certain quantum symplectic spaces {II}}, journal = {Comptes Rendus. Math\'ematique}, pages = {383--405}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.723}, language = {en}, }
Snehashis Mukherjee. Azumaya locus over certain quantum symplectic spaces II. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 383-405. doi : 10.5802/crmath.723. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.723/
[1] Generalized Weyl algebras and their representations, St. Petersbg. Math. J., Volume 4 (1992) no. 1, pp. 71-92 | MR | Zbl
[2] Simple
[3] Global dimension of generalized Weyl algebras, Representation theory of algebras (Cocoyoc, 1994) (CMS Conference Proceedings), American Mathematical Society, 1996, pp. 81-107 | MR | Zbl
[4] The simple modules of the Ore extensions with coefficients from a Dedekind ring, Commun. Algebra, Volume 27 (1999) no. 6, pp. 2665-2699 | DOI | MR | Zbl
[5] The prime spectrum and simple modules over the quantum spatial ageing algebra, Algebr. Represent. Theory, Volume 19 (2016) no. 5, pp. 1109-1133 | DOI | MR | Zbl
[6] The quantum Euclidean algebra and its prime spectrum, Isr. J. Math., Volume 219 (2017) no. 2, pp. 929-958 | DOI | MR | Zbl
[7] Torsion simple modules over the quantum spatial ageing algebra, Commun. Algebra, Volume 45 (2017) no. 10, pp. 4166-4189 | DOI | MR | Zbl
[8] The prime spectrum of the algebra
[9] The simple modules of certain generalized crossed products, J. Algebra, Volume 194 (1997) no. 2, pp. 521-566 | DOI | MR | Zbl
[10] Lectures on algebraic quantum groups, Advanced Courses in Mathematics – CRM Barcelona, Birkhäuser, 2002, x+348 pages | DOI | MR
[11] Azumaya loci and discriminant ideals of PI algebras, Adv. Math., Volume 340 (2018), pp. 1219-1255 | DOI | MR | Zbl
[12] Quantum coadjoint action, J. Am. Math. Soc., Volume 5 (1992) no. 1, pp. 151-189 | DOI | MR | Zbl
[13] Quantum groups,
[14] Quantization of Lie groups and Lie algebras, Algebraic analysis, Vol. I, Academic Press Inc., 1988, pp. 129-139 | MR | Zbl
[15] Prime and primitive ideals of a class of iterated skew polynomial rings, J. Algebra, Volume 244 (2001) no. 1, pp. 186-216 | DOI | MR | Zbl
[16] Prime ideals of the coordinate ring of quantum symplectic space, Commun. Algebra, Volume 29 (2001) no. 7, pp. 3179-3197 | DOI | MR | Zbl
[17] PI degree parity in
[18] The prime and primitive spectra of multiparameter quantum symplectic and Euclidean spaces., Commun. Algebra, Volume 31 (2003) no. 10, pp. 4713-4743 | DOI | MR | Zbl
[19] Quantized Heisenberg space, Algebr. Represent. Theory, Volume 3 (2000) no. 2, pp. 151-174 | DOI | MR | Zbl
[20] Finite-dimensional simple modules over certain iterated skew polynomial rings, J. Pure Appl. Algebra, Volume 98 (1995) no. 1, pp. 45-55 | DOI | MR | Zbl
[21] Quantum
[22] On
[23] Noncommutative Noetherian rings, Graduate Studies in Mathematics, 30, American Mathematical Society, 2001, xx+636 pages | DOI | MR
[24] The Azumaya locus of certain quantum symplectic spaces, Commun. Algebra, Volume 52 (2024) no. 5, pp. 2127-2137 | DOI | MR | Zbl
[25] Primitive ideals of the coordinate ring of quantum symplectic space, J. Algebra, Volume 174 (1995) no. 2, pp. 531-552 | DOI | MR | Zbl
[26] Catenarity in a class of iterated skew polynomial rings, Commun. Algebra, Volume 25 (1997) no. 1, pp. 37-49 | DOI | MR | Zbl
[27] Representations of quantum nilpotent algebras at roots of unity, and their completely prime quotients, Ph. D. Thesis, University of Kent (UK) (2019) https://kar.kent.ac.uk/id/eprint/73049
Cité par Sources :
Commentaires - Politique