[Un théorème de soulèvement pour les espaces métriques]
In a recent article Farah and the authors proved a strong lifting theorem for well-behaved maps between reduced products of discrete structures, under the assumption of fairly mild Forcing Axioms. In this note, we prove the analogue of this result in the metric setting.
Dans un article récent, Farah et les auteurs ont démontré un fort théorème de soulèvement pour les fonctions entre produits réduits de structures discrètes, sous l’hypothèse d’axiomes de forçage assez faibles. Dans cet article, nous prouvons l’analogue de ce résultat dans le cadre métrique.
Révisé le :
Accepté le :
Publié le :
Ben De Bondt 1 ; Alessandro Vignati 2

@article{CRMATH_2025__363_G4_415_0, author = {Ben De Bondt and Alessandro Vignati}, title = {A metric lifting theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {415--424}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.729}, language = {en}, }
Ben De Bondt; Alessandro Vignati. A metric lifting theorem. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 415-424. doi : 10.5802/crmath.729. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.729/
[1] On the consistency of some partition theorems for continuous colorings, and the structure of
[2] Trivial isomorphisms between reduced products (2023) (To appear in Isr. J. Math.) | arXiv
[3]
[4] Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Am. Math. Soc., Volume 148 (2000) no. 702, p. xvi+177 | DOI | MR | Zbl
[5] Between reduced powers and ultrapowers, J. Eur. Math. Soc., Volume 25 (2023) no. 11, pp. 4369-4394 | DOI | MR | Zbl
[6] Corona rigidity (2022) | arXiv
[7] Reduced products of metric structures: a metric Feferman–Vaught theorem, J. Symb. Log., Volume 81 (2016) no. 3, pp. 856-875 | DOI | MR | Zbl
[8] Partition problems in topology, Contemporary Mathematics, 84, American Mathematical Society, 1989, xii+116 pages | DOI | MR
Cité par Sources :
Commentaires - Politique