[Sur la présence de petits intervalles dans la suite d’Ulam]
The Ulam sequence, described by Stanisław Ulam in the 1960s, starts 1, 2 and then iteratively adds the smallest integer that can be uniquely written as the sum of two distinct earlier terms: this gives $1,2,3,4,6,8,11,\dots $ Already in 1972 the great French poet Raymond Queneau wrote that it “gives an impression of great irregularity”. This irregularity appears to have a lot of structure and has inspired a great deal of work; nonetheless, very little is actually known. We improve the best upper bound on its growth and show that some small gaps have to exist: for some $c>0$ and all $n \in \mathbb{N}$,
| \[ \min _{1 \le k \le n} \frac{a_{k+1}}{a_k} \le 1 + c\frac{\log {n}}{n}. \] |
La séquence d’Ulam, introduite par Stanisław Ulam dans les années 1960, commence par 1, 2, puis rajoute itérativement à la séquence le plus petit entier s’écrivant comme une somme unique de deux termes distincts de la séquence. La séquence débute donc par $1,2,3,4,6,8,11,\dots $ Dès 1972, le poète Raymond Queneau écrivait qu’“elle donne l’impression de grande irrégularité”. Cette irrégularité semble avoir une structure particulière, inspirant de nombreux travaux, mais ayant débouché sur peu de résultats formels. Nous améliorons ici le meilleur majorant pour sa croissance asymptotique, ainsi que l’existence de “petits” intervalles entre deux éléments consécutifs : pour $c>0$ et pour tout $n \in \mathbb{N}$,
| \[ \min _{1 \le k \le n} \frac{a_{k+1}}{a_k} \le 1 + c\frac{\log {n}}{n}. \] |
Révisé le :
Accepté le :
Publié le :
Mots-clés : Suite d’Ulam, suites $s$-additives
François Clément 1 ; Stefan Steinerberger 1
CC-BY 4.0
@article{CRMATH_2025__363_G10_941_0,
author = {Fran\c{c}ois Cl\'ement and Stefan Steinerberger},
title = {Small gaps in the {Ulam} sequence},
journal = {Comptes Rendus. Math\'ematique},
pages = {941--949},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.746},
language = {en},
}
François Clément; Stefan Steinerberger. Small gaps in the Ulam sequence. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 941-949. doi: 10.5802/crmath.746
[1] Distributions of Ulam words up to length 30 (2024) | arXiv
[2] A hidden signal in Hofstadter’s sequence (2022) | arXiv | Zbl
[3] Ulam sets in new settings, Integers, Volume 20 (2020), A102, 40 pages | MR | Zbl
[4] The boundedness of all products of a pair of matrices is undecidable, Syst. Control Lett., Volume 41 (2000) no. 2, pp. 135-140 | DOI | MR | Zbl
[5] A class of 1-additive sequences and quadratic recurrences, Exp. Math., Volume 4 (1995) no. 1, pp. 49-60 | MR | DOI | Zbl
[6] Conjectures about -additive sequences, Fibonacci Q., Volume 29 (1991) no. 3, pp. 209-214 | MR | DOI | Zbl
[7] On the regularity of certain 1-additive sequences, J. Comb. Theory, Ser. A, Volume 60 (1992) no. 1, pp. 123-130 | DOI | MR | Zbl
[8] Patterns in 1-additive sequences, Exp. Math., Volume 1 (1992) no. 1, pp. 57-63 | MR | Zbl
[9] Unsolved problems: are 0-additive sequences always regular?, Am. Math. Mon., Volume 99 (1992) no. 7, pp. 671-673 | DOI | MR | Zbl
[10] Normierte Ringe, Mat. Sb., N. Ser., Volume 9/51 (1941), pp. 3-24 | MR | Zbl
[11] Rigidity of Ulam sets and sequences, Involve, Volume 12 (2019) no. 3, pp. 521-539 | DOI | MR | Zbl
[12] The unreasonable rigidity of Ulam sequences, J. Number Theory, Volume 194 (2019), pp. 409-425 | MR | DOI | Zbl
[13] Ulam sequences and Ulam sets, Integers, Volume 18 (2018), A80, 22 pages | MR | Zbl
[14] Structures in additive sequences, Acta Arith., Volume 186 (2018) no. 3, pp. 273-300 | DOI | MR | Zbl
[15] On fractal patterns in Ulam words (2022) | arXiv | Zbl
[16] Mathematical problems and games, Adv. Appl. Math., Volume 8 (1987) no. 3, pp. 281-344 | Zbl | DOI | MR
[17] Sur les suites -additives, C. R. Math., Volume 266 (1968), p. A957-A958 | MR | Zbl
[18] Sur les suites -additives, J. Comb. Theory, Ser. A, Volume 12 (1972), pp. 31-71 | DOI | MR | Zbl
[19] Morale élémentaire, Gallimard, 1975, 146 pages
[20] Research problems: questions on a sequence of Ulam, Am. Math. Mon., Volume 80 (1973) no. 8, pp. 919-920 | MR | DOI
[21] A note on the joint spectral radius, Indag. Math., Volume 22 (1960), pp. 379-381 | DOI | Zbl | MR
[22] The regularity of some 1-additive sequences, J. Comb. Theory, Ser. A, Volume 66 (1994) no. 1, pp. 172-175 | DOI | MR | Zbl
[23] The Ulam sequence of linear integer polynomials, J. Integer Seq., Volume 24 (2021) no. 10, 21.10.8, 23 pages | MR | Zbl
[24] A hidden signal in the Ulam sequence, Exp. Math., Volume 26 (2017) no. 4, pp. 460-467 | DOI | MR | Zbl
[25] On some mathematical problems connected with patterns of growth of figures, Proceedings of Symposia in Applied Mathematics. Vol. XIV. Mathematical problems in the biological sciences, American Mathematical Society (1962), pp. 215-224 | MR
[26] Combinatorial analysis in infinite sets and some physical theories, SIAM Rev., Volume 6 (1964), pp. 343-355 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique
