Comptes Rendus
Probabilités
A Berry–Esseen bound of order 1 n for martingales
[Une borne de Berry–Esseen d’ordre 1 n pour les martingales]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 701-712.

Renz [13] a établi un taux de convergence 1/n dans le théorème de la limite centrale pour les martingales avec certaines conditions restrictives. Dans le présent article, une modification des méthodes, développées par Bolthausen [2] et Grama et Haeusler [6], est appliquée pour obtenir le même taux de convergence pour une classe de martingales plus générales. Une application aux processus linéaires est discutée.

Renz [13] has established a rate of convergence 1/n in the central limit theorem for martingales with some restrictive conditions. In the present paper a modification of the methods, developed by Bolthausen [2] and Grama and Haeusler [6], is applied for obtaining the same convergence rate for a class of more general martingales. An application to linear processes is discussed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.81

Songqi Wu 1 ; Xiaohui Ma 1 ; Hailin Sang 2 ; Xiequan Fan 1

1 Center for Applied Mathematics, Tianjin University, Tianjin, China
2 Department of Mathematics, The University of Mississippi, University, MS 38677, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_6_701_0,
     author = {Songqi Wu and Xiaohui Ma and Hailin Sang and Xiequan Fan},
     title = {A {Berry{\textendash}Esseen} bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {701--712},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {6},
     year = {2020},
     doi = {10.5802/crmath.81},
     language = {en},
}
TY  - JOUR
AU  - Songqi Wu
AU  - Xiaohui Ma
AU  - Hailin Sang
AU  - Xiequan Fan
TI  - A Berry–Esseen bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 701
EP  - 712
VL  - 358
IS  - 6
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.81
LA  - en
ID  - CRMATH_2020__358_6_701_0
ER  - 
%0 Journal Article
%A Songqi Wu
%A Xiaohui Ma
%A Hailin Sang
%A Xiequan Fan
%T A Berry–Esseen bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales
%J Comptes Rendus. Mathématique
%D 2020
%P 701-712
%V 358
%N 6
%I Académie des sciences, Paris
%R 10.5802/crmath.81
%G en
%F CRMATH_2020__358_6_701_0
Songqi Wu; Xiaohui Ma; Hailin Sang; Xiequan Fan. A Berry–Esseen bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales. Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 701-712. doi : 10.5802/crmath.81. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.81/

[1] Aleksandr Beknazaryan; Hailin Sang; Yimin Xiao Cramer type moderate deviations for random fields, J. Appl. Probab., Volume 56 (2019) no. 1, pp. 223-245 | DOI | MR | Zbl

[2] Erwin Bolthausen Exact convergence rates in some martingale central limit theorems, Ann. Probab., Volume 10 (1982), pp. 672-688 | DOI | MR | Zbl

[3] Mohamed El Machkouri; Lahcen Ouchti Exact convergence rates in the central limit theorem for a class of martingales, Bernoulli, Volume 13 (2007) no. 4, pp. 981-999 | DOI | MR | Zbl

[4] Xiequan Fan Exact rates of convergence in some martingale central limit theorems, J. Math. Anal. Appl., Volume 469 (2019) no. 2, pp. 1028-1044 | MR | Zbl

[5] Timothy Fortune; Magda Peligrad; Hailin Sang A local limit theorem for linear random fields (2020) (https://arxiv.org/abs/2007.05036, submitted)

[6] Ion Grama; Erich Haeusler Large deviations for martingales via Cramér’s method, Stochastic Processes Appl., Volume 85 (2000) no. 2, pp. 279-293 | DOI | Zbl

[7] Clive William John Granger; Roselyne Joyeux An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., Volume 1 (1980), pp. 15-29 | DOI | MR | Zbl

[8] Peter G. Hall; Christopher C. Heyde Martingale limit theory and its applications, Probability and Mathematical Statistics, Academic Press Inc., 1980 | Zbl

[9] Jonathan R. M. Hosking Fractional differencing, Biometrika, Volume 68 (1981), pp. 165-176 | DOI | MR | Zbl

[10] L. V. Kir’yanova; Vladimir I. Rotar Estimates for the rate of convergence in the central limit theorem for martingales, Theory Probab. Appl., Volume 36 (1991) no. 2, pp. 289-302 | DOI | MR | Zbl

[11] Jean-Christophe Mourrat On the rate of convergence in the martingale central limit theorem, Bernoulli, Volume 19 (2013) no. 2, pp. 633-645 | DOI | MR | Zbl

[12] Lahcen Ouchti On the rate of convergence in the central limit theorem for martingale difference sequences, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 41 (2005) no. 1, pp. 35-43 | DOI | Numdam | MR | Zbl

[13] Joachim Renz A note on exact convergence rates in some martingale central limit theorems, Ann. Probab., Volume 24 (1996) no. 3, pp. 1616-1637 | DOI | MR | Zbl

[14] Wei Biao Wu; Wanli Min On linear processes with dependent innovations, Stochastic Processes Appl., Volume 115 (2005) no. 6, pp. 939-958 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique