[Une borne de Berry–Esseen d’ordre pour les martingales]
Renz [13] a établi un taux de convergence dans le théorème de la limite centrale pour les martingales avec certaines conditions restrictives. Dans le présent article, une modification des méthodes, développées par Bolthausen [2] et Grama et Haeusler [6], est appliquée pour obtenir le même taux de convergence pour une classe de martingales plus générales. Une application aux processus linéaires est discutée.
Renz [13] has established a rate of convergence in the central limit theorem for martingales with some restrictive conditions. In the present paper a modification of the methods, developed by Bolthausen [2] and Grama and Haeusler [6], is applied for obtaining the same convergence rate for a class of more general martingales. An application to linear processes is discussed.
Accepté le :
Publié le :
Songqi Wu 1 ; Xiaohui Ma 1 ; Hailin Sang 2 ; Xiequan Fan 1
@article{CRMATH_2020__358_6_701_0, author = {Songqi Wu and Xiaohui Ma and Hailin Sang and Xiequan Fan}, title = {A {Berry{\textendash}Esseen} bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales}, journal = {Comptes Rendus. Math\'ematique}, pages = {701--712}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {6}, year = {2020}, doi = {10.5802/crmath.81}, language = {en}, }
TY - JOUR AU - Songqi Wu AU - Xiaohui Ma AU - Hailin Sang AU - Xiequan Fan TI - A Berry–Esseen bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales JO - Comptes Rendus. Mathématique PY - 2020 SP - 701 EP - 712 VL - 358 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.81 LA - en ID - CRMATH_2020__358_6_701_0 ER -
%0 Journal Article %A Songqi Wu %A Xiaohui Ma %A Hailin Sang %A Xiequan Fan %T A Berry–Esseen bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales %J Comptes Rendus. Mathématique %D 2020 %P 701-712 %V 358 %N 6 %I Académie des sciences, Paris %R 10.5802/crmath.81 %G en %F CRMATH_2020__358_6_701_0
Songqi Wu; Xiaohui Ma; Hailin Sang; Xiequan Fan. A Berry–Esseen bound of order $\protect \frac{1}{\protect \sqrt{n}} $ for martingales. Comptes Rendus. Mathématique, Volume 358 (2020) no. 6, pp. 701-712. doi : 10.5802/crmath.81. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.81/
[1] Cramer type moderate deviations for random fields, J. Appl. Probab., Volume 56 (2019) no. 1, pp. 223-245 | DOI | MR | Zbl
[2] Exact convergence rates in some martingale central limit theorems, Ann. Probab., Volume 10 (1982), pp. 672-688 | DOI | MR | Zbl
[3] Exact convergence rates in the central limit theorem for a class of martingales, Bernoulli, Volume 13 (2007) no. 4, pp. 981-999 | DOI | MR | Zbl
[4] Exact rates of convergence in some martingale central limit theorems, J. Math. Anal. Appl., Volume 469 (2019) no. 2, pp. 1028-1044 | MR | Zbl
[5] A local limit theorem for linear random fields (2020) (https://arxiv.org/abs/2007.05036, submitted)
[6] Large deviations for martingales via Cramér’s method, Stochastic Processes Appl., Volume 85 (2000) no. 2, pp. 279-293 | DOI | Zbl
[7] An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., Volume 1 (1980), pp. 15-29 | DOI | MR | Zbl
[8] Martingale limit theory and its applications, Probability and Mathematical Statistics, Academic Press Inc., 1980 | Zbl
[9] Fractional differencing, Biometrika, Volume 68 (1981), pp. 165-176 | DOI | MR | Zbl
[10] Estimates for the rate of convergence in the central limit theorem for martingales, Theory Probab. Appl., Volume 36 (1991) no. 2, pp. 289-302 | DOI | MR | Zbl
[11] On the rate of convergence in the martingale central limit theorem, Bernoulli, Volume 19 (2013) no. 2, pp. 633-645 | DOI | MR | Zbl
[12] On the rate of convergence in the central limit theorem for martingale difference sequences, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 41 (2005) no. 1, pp. 35-43 | DOI | Numdam | MR | Zbl
[13] A note on exact convergence rates in some martingale central limit theorems, Ann. Probab., Volume 24 (1996) no. 3, pp. 1616-1637 | DOI | MR | Zbl
[14] On linear processes with dependent innovations, Stochastic Processes Appl., Volume 115 (2005) no. 6, pp. 939-958 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique