Comptes Rendus
Analyse numérique
A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative
Comptes Rendus. Mathématique, Volume 358 (2020) no. 7, pp. 831-842.

The present work aims to approximate the solution of linear time fractional PDE with Caputo Fabrizio derivative. For the said purpose Laplace transform with local radial basis functions is used. The Laplace transform is applied to obtain the corresponding time independent equation in Laplace space and then the local RBFs are employed for spatial discretization. The solution is then represented as a contour integral in the complex space, which is approximated by trapezoidal rule with high accuracy. The application of Laplace transform avoids the time stepping procedure which commonly encounters the time instability issues. The convergence of the method is discussed also we have derived the bounds for the stability constant of the differentiation matrix of our proposed numerical scheme. The efficiency of the method is demonstrated with the help of numerical examples. For our numerical experiments we have selected three different domains, in the first test case the square domain is selected, for the second test the circular domain is considered, while for third case the L-shape domain is selected.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.98

Kamran 1 ; Amjad Ali 2 ; José Francisco Gómez-Aguilar 3

1 Department of Mathematics, Islamia College Peshawar, Khyber Pakhtoon Khwa, Pakistan.
2 Department of Basic Sciences and Islamiat, University of Engineering and Technology Peshawar,Khyber Pakhtoon Khwa, Pakistan.
3 CONACyT-Tecnológico Nacional de México/CENIDET.Interior Internado Palmira S/N, Col. Palmira, C.P.62490, Cuernavaca, Morelos, México.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_7_831_0,
     author = {Kamran and Amjad Ali and Jos\'e Francisco G\'omez-Aguilar},
     title = {A transform based local {RBF} method for {2D} linear {PDE} with {Caputo{\textendash}Fabrizio} derivative},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {831--842},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {7},
     year = {2020},
     doi = {10.5802/crmath.98},
     language = {en},
}
TY  - JOUR
AU  - Kamran
AU  - Amjad Ali
AU  - José Francisco Gómez-Aguilar
TI  - A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 831
EP  - 842
VL  - 358
IS  - 7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.98
LA  - en
ID  - CRMATH_2020__358_7_831_0
ER  - 
%0 Journal Article
%A Kamran
%A Amjad Ali
%A José Francisco Gómez-Aguilar
%T A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative
%J Comptes Rendus. Mathématique
%D 2020
%P 831-842
%V 358
%N 7
%I Académie des sciences, Paris
%R 10.5802/crmath.98
%G en
%F CRMATH_2020__358_7_831_0
Kamran; Amjad Ali; José Francisco Gómez-Aguilar. A transform based local RBF method for 2D linear PDE with Caputo–Fabrizio derivative. Comptes Rendus. Mathématique, Volume 358 (2020) no. 7, pp. 831-842. doi : 10.5802/crmath.98. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.98/

[1] Obaid Jefain Julaighim Algahtani Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model, Chaos Solitons Fractals, Volume 89 (2016), pp. 552-559 | DOI | MR | Zbl

[2] Sadia Arshad; Ozlem Defterli; Dumitru Baleanu A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model, Appl. Math. Comput. (2020), 125061, p. 18 | MR | Zbl

[3] Abdon Atangana On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation, Appl. Math. Comput., Volume 273 (2016), pp. 948-956 | MR | Zbl

[4] Abdon Atangana; Badr Saad T. Alkahtani New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative, Arab. J. Geosci., Volume 9 (2016), p. 8 | DOI

[5] Abdon Atangana; Rubayyi T. Alqahtani Numerical approximation of the space-time Caputo–Fabrizio fractional derivative and application to groundwater pollution equation, Adv. Difference Equ. (2016), 156 | DOI | MR | Zbl

[6] Michele Caputo; Mauro Fabrizio A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl, Volume 1 (2015) no. 2, pp. 73-85

[7] Carlo Cattani; Hari M. Srivastava; Xiao Jun Yang Fractional dynamics, De Gruyter, 2015 | Zbl

[8] Emile F. Doungmo Goufo Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Bergers equation, Math. Model. Anal., Volume 21 (2016) no. 2, pp. 188-198 | DOI | MR

[9] Emile F. Doungmo Goufo; Morgan K. Pene; Jeanine N. Mwambakana Duplication in a model of rock fracture with fractional derivative without singular kernel, Open Math., Volume 13 (2015) no. 1, pp. 839-846 | MR | Zbl

[10] Pierre A. Feulefack; Jean Daniel Djida; Abdon Atangana A new model of groundwater flow within an unconfined aquifer: Application of Caputo–Fabrizio fractional derivative, Discrete Contin. Dyn. Syst., Volume 24 (2019) no. 7, pp. 3227-3247 | MR | Zbl

[11] José F. Gómez-Aguilar; Huitzilin Yépez-Martínez; Celia Calderón-Ramón; Ines Cruz-Orduña; Ricardo F. Escobar-Jiménez; Victor H. Olivares-Peregrino Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel, Entropy, Volume 17 (2015) no. 9, pp. 6289-6303 | DOI | MR | Zbl

[12] Imad Jaradat; Marwan Alquran; Shaher Momani; Dumitru Baleanu Numerical schemes for studying biomathematics model inherited with memory-time and delay-time (2020) (Article in press to appear in Alexandria Engineering Journal, https://www.sciencedirect.com/science/article/pii/S1110016820301472)

[13] Kamran; Marjan Uddin; Amjad Ali On the approximation of time-fractional telegraph equations using localized kernel-based method, Adv. Differ. Equ. (2018), 305 | DOI | MR | Zbl

[14] Anatolii A. Kilbas; Hari M. Srivastava; Juan J. Trujillo Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier, 2006 | MR | Zbl

[15] William McLean; Vidar Thomée Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equations Appl., Volume 22 (2010) no. 1, pp. 57-94 | DOI | MR | Zbl

[16] Itrat A. Mirza; Dumitru Vieru Fundamental solutions to advection–diffusion equation with time-fractional Caputo–Fabrizio derivative, Comput. Math. Appl., Volume 73 (2017) no. 1, pp. 1-10 | DOI | MR | Zbl

[17] Victor F. Morales-Delgado; José F. Gómez-Aguilar; Huitzilin Yépez-Martínez; Dumitru Baleanu; Ricardo F. Escobar-Jiménez; Victor H. Olivares-Peregrino Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular, Adv. Difference Equ., Volume 2016 (2016) no. 1, 164 | MR | Zbl

[18] Keith B. Oldham; Jerome Spanier The fractional calculus theory and applications of differentiation and integration to arbitrary order, Mathematics in Science and Engineering, 111, Academic Press Inc., 1974 | Zbl

[19] Kolade M. Owolabi; Abdon Atangana Analysis and application of new fractional Adams–Bashforth scheme with Caputo–Fabrizio derivative, Chaos Solitons Fractals, Volume 105 (2017), pp. 111-119 | DOI | MR | Zbl

[20] Kolade M. Owolabi; Abdon Atangana Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense, Chaos Solitons Fractals, Volume 99 (2017), pp. 171-179 | DOI | MR | Zbl

[21] Igor Podlubny Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, 1999 | Zbl

[22] Stefan G. Samko; Anatolii A. Kilbas; Oleg I. Marichev Fractional integrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, 1993 | Zbl

[23] Robert Schaback Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math., Volume 3 (1995) no. 3, pp. 251-264 | DOI | MR | Zbl

[24] Marjan Uddin; Kamran; Amjad Ali A localized transform-based meshless method for solving time fractional wave-diffusion equation, Eng. Anal. Bound. Elem., Volume 92 (2018), pp. 108-113 | DOI | MR | Zbl

[25] Hong-Wei Zhou; Shuai Yang; Shu Qin Zhang Modeling non-Darcian flow and solute transport in porous media with the Caputo–Fabrizio derivative, Appl. Math. Modelling, Volume 68 (2019), pp. 603-615 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique