Nous exposons ici deux remarques sur la notion de flot généralisé, introduite par DiPerna et le troisième auteur (R.J. Di Perna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (3) (1989) 511–547), pour les équations différentielles ordinaires. D'une part, nous fournissons une preuve autonome de l'unicité d'un tel flot, c'est-à-dire une preuve ne reposant pas sur l'interprétation du flot généralisé en termes de flot pour l'équation de transport associée. D'autre part, en utilisant cette fois l'équation de transport associée, nous généralisons sensiblement la preuve d'unicité fournie dans l'article cité en nous affranchissant pour le flot de l'hypothèse de structure de groupe en temps.
This Note presents two remarks on the notion of generalized flow solution to ordinary differential equations, as introduced by DiPerna and the third author (R.J. Di Perna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (3) (1989) 511–547). On the one hand, we provide a self-contained proof of the uniqueness of such a flow. By this, we mean that our new proof does not exploit the interpretation of the generalized flow in terms of flow for the associated linear transport equation. On the other hand, this time using the associated linear transport equation, we slightly extend the result of uniqueness contained in the article cited, proving it holds without the group property of the flow (in the time variable).
Accepté le :
Publié le :
Maxime Hauray 1 ; Claude Le Bris 2, 3 ; Pierre-Louis Lions 4, 5
@article{CRMATH_2007__344_12_759_0, author = {Maxime Hauray and Claude Le Bris and Pierre-Louis Lions}, title = {Deux remarques sur les flots g\'en\'eralis\'es d'\'equations diff\'erentielles ordinaires}, journal = {Comptes Rendus. Math\'ematique}, pages = {759--764}, publisher = {Elsevier}, volume = {344}, number = {12}, year = {2007}, doi = {10.1016/j.crma.2007.05.010}, language = {fr}, }
TY - JOUR AU - Maxime Hauray AU - Claude Le Bris AU - Pierre-Louis Lions TI - Deux remarques sur les flots généralisés d'équations différentielles ordinaires JO - Comptes Rendus. Mathématique PY - 2007 SP - 759 EP - 764 VL - 344 IS - 12 PB - Elsevier DO - 10.1016/j.crma.2007.05.010 LA - fr ID - CRMATH_2007__344_12_759_0 ER -
Maxime Hauray; Claude Le Bris; Pierre-Louis Lions. Deux remarques sur les flots généralisés d'équations différentielles ordinaires. Comptes Rendus. Mathématique, Volume 344 (2007) no. 12, pp. 759-764. doi : 10.1016/j.crma.2007.05.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2007.05.010/
[1] Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004), pp. 227-260
[2] Lipschitz regularity and approximate differentiability of the DiPerna–Lions flow, Rend. Sem. Fis. Mat. Padova, Volume 114 (2005), pp. 29-50
[3] L. Ambrosio, G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, preprint, 2006
[4] G. Crippa, C. De Lellis, Estimates and regularity results for the DiPerna–Lions flow, J. Reine Angew. Math., a paraître
[5] G. Crippa, C. De Lellis, Regularity and compactness for the DiPerna-Lions flow, in: Proceedings of the HYP2006 Conference, Lyon, 2006
[6] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511-547
[7] C. Le Bris, P.L. Lions, Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients, Diff. Equ., a paraître
[8] Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris, Sér. I. Math., Volume 326 (1998) no. 7, pp. 833-838
- A quantitative analysis of Koopman operator methods for system identification and predictions, Comptes Rendus. Mécanique, Volume 351 (2024) no. S1, p. 721 | DOI:10.5802/crmeca.138
- Convergence of Numerical Approximations to Non-linear Continuity Equations with Rough Force Fields, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 2, p. 509 | DOI:10.1007/s00205-019-01396-3
- A Semi-Lagrangian scheme for the Fokker-Planck equation, IFAC-PapersOnLine, Volume 49 (2016) no. 8, p. 272 | DOI:10.1016/j.ifacol.2016.07.453
- Critical non-Sobolev regularity for continuity equations with rough velocity fields, Journal of Differential Equations, Volume 260 (2016) no. 5, p. 4739 | DOI:10.1016/j.jde.2015.11.028
- Compactness for nonlinear continuity equations, Journal of Functional Analysis, Volume 264 (2013) no. 1, p. 139 | DOI:10.1016/j.jfa.2012.10.005
- A new proof of the uniqueness of the flow for ordinary differential equations with BV vector fields, Annali di Matematica Pura ed Applicata, Volume 190 (2011) no. 1, p. 91 | DOI:10.1007/s10231-010-0140-7
- The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems, Nonlinear Conservation Laws and Applications, Volume 153 (2011), p. 181 | DOI:10.1007/978-1-4419-9554-4_7
- Well Posedness in any Dimension for Hamiltonian Flows with NonBVForce Terms, Communications in Partial Differential Equations, Volume 35 (2010) no. 5, p. 786 | DOI:10.1080/03605301003646705
- Differential equations with singular fields, Journal de Mathématiques Pures et Appliquées, Volume 94 (2010) no. 6, p. 597 | DOI:10.1016/j.matpur.2010.07.001
- Transport equation: Extension of classical results for divb∈BMO, Journal of Differential Equations, Volume 249 (2010) no. 8, p. 1871 | DOI:10.1016/j.jde.2010.07.015
- Stability of trajectories forN-particle dynamics with a singular potential, Journal of Statistical Mechanics: Theory and Experiment, Volume 2010 (2010) no. 07, p. P07005 | DOI:10.1088/1742-5468/2010/07/p07005
- Existence and Uniqueness of Solutions to Fokker–Planck Type Equations with Irregular Coefficients, Communications in Partial Differential Equations, Volume 33 (2008) no. 7, p. 1272 | DOI:10.1080/03605300801970952
- Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients, Journal of Functional Analysis, Volume 254 (2008) no. 1, p. 109 | DOI:10.1016/j.jfa.2007.09.020
Cité par 13 documents. Sources : Crossref
Commentaires - Politique