[Sur la continuité des opérateurs intégraux de Fourier sur
The aim of this Note is to present global
Dans cette Note nous présentons des estimations globales pour les opérateurs intégraux de Fourier dans les espaces
Accepté le :
Publié le :
Sandro Coriasco 1 ; Michael Ruzhansky 2
@article{CRMATH_2010__348_15-16_847_0, author = {Sandro Coriasco and Michael Ruzhansky}, title = {On the boundedness of {Fourier} integral operators on $ {L}^{p}({\mathbb{R}}^{n})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {847--851}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.025}, language = {en}, }
TY - JOUR AU - Sandro Coriasco AU - Michael Ruzhansky TI - On the boundedness of Fourier integral operators on $ {L}^{p}({\mathbb{R}}^{n})$ JO - Comptes Rendus. Mathématique PY - 2010 SP - 847 EP - 851 VL - 348 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2010.07.025 LA - en ID - CRMATH_2010__348_15-16_847_0 ER -
Sandro Coriasco; Michael Ruzhansky. On the boundedness of Fourier integral operators on $ {L}^{p}({\mathbb{R}}^{n})$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 847-851. doi : 10.1016/j.crma.2010.07.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.025/
[1] On some oscillatory integral transformations in
[2]
[3] Estimations
[4] On the boundedness of pseudo-differential operators, J. Math. Soc. Japan, Volume 23 (1971), pp. 374-378
[5] On the
[6] Au-delà des opérateurs pseudo-différentiels, Astérisque, Volume 57 (1978)
[7] Boundedness of Fourier integral operators on
[8] On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal., Volume 18 (1975), pp. 115-131
[9] Fourier integral operators in SG classes I: composition theorems and action on SG Sobolev spaces, Rend. Sem. Mat. Univ. Pol. Torino, Volume 57 (1999), pp. 249-302
[10] Degenerate elliptic pseudo-differential operators of principal type, Math. USSR Sbornik, Volume 11 (1970), pp. 539-585
[11] Fourier integral operators. I, Acta Math., Volume 127 (1971), pp. 79-183
[12] A calculus of Fourier integral operators on
[13] On some estimates for the wave operator in
[14]
[15] Singularities of affine fibrations in the regularity theory of Fourier integral operators, Russian Math. Surveys, Volume 55 (2000), pp. 99-170
[16] Regularity Theory of Fourier Integral Operators with Complex Phases and Singularities of Affine Fibrations, CWI Tract, vol. 131, Math. Centrum, CWI, Amsterdam, 2001
[17] Global
[18] A smoothing property of Schrödinger equations in the critical case, Math. Ann., Volume 335 (2006), pp. 645-673
[19] Global calculus of Fourier integral operators, weighted estimates, and applications to global analysis of hyperbolic equations, Oper. Theory Adv. Appl., Volume 164 (2006), pp. 65-78
[20] Weighted Sobolev
[21] Regularity properties of Fourier integral operators, Ann. of Math., Volume 134 (1991), pp. 231-251
[22]
[23] The weak-type
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier