[Inégalités de Caffarelli–Kohn–Nirenberg étendues et super-poids des inégalités de Hardy Lp-pondérées]
Dans cet article, nous donnons une extension des inégalités classiques de Caffarelli–Kohn–Nirenberg relativement à l'étendue du domaine des paramètres. Nous établissons également les meilleures constantes pour les grandes familles de paramètres. De plus, nous obtenons des versions anisotropes de ces inégalités qui peuvent etre commodément formulées dans le langage des groupes homogènes de Folland et Stein. Nous établissons aussi des inégalités de type Hardy dans
In this paper, we give an extension of the classical Caffarelli–Kohn–Nirenberg inequalities with respect to the range of parameters. We also establish best constants for large families of parameters. Moreover, we also obtain anisotropic versions of these inequalities which can be conveniently formulated in the language of Folland and Stein's homogeneous groups. We also establish sharp Hardy type inequalities in
Accepté le :
Publié le :
Michael Ruzhansky 1 ; Durvudkhan Suragan 2 ; Nurgissa Yessirkegenov 1
@article{CRMATH_2017__355_6_694_0, author = {Michael Ruzhansky and Durvudkhan Suragan and Nurgissa Yessirkegenov}, title = {Extended {Caffarelli{\textendash}Kohn{\textendash}Nirenberg} inequalities and superweights for {\protect\emph{L}\protect\textsuperscript{\protect\emph{p}}-weighted} {Hardy} inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {694--698}, publisher = {Elsevier}, volume = {355}, number = {6}, year = {2017}, doi = {10.1016/j.crma.2017.04.011}, language = {en}, }
TY - JOUR AU - Michael Ruzhansky AU - Durvudkhan Suragan AU - Nurgissa Yessirkegenov TI - Extended Caffarelli–Kohn–Nirenberg inequalities and superweights for Lp-weighted Hardy inequalities JO - Comptes Rendus. Mathématique PY - 2017 SP - 694 EP - 698 VL - 355 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2017.04.011 LA - en ID - CRMATH_2017__355_6_694_0 ER -
%0 Journal Article %A Michael Ruzhansky %A Durvudkhan Suragan %A Nurgissa Yessirkegenov %T Extended Caffarelli–Kohn–Nirenberg inequalities and superweights for Lp-weighted Hardy inequalities %J Comptes Rendus. Mathématique %D 2017 %P 694-698 %V 355 %N 6 %I Elsevier %R 10.1016/j.crma.2017.04.011 %G en %F CRMATH_2017__355_6_694_0
Michael Ruzhansky; Durvudkhan Suragan; Nurgissa Yessirkegenov. Extended Caffarelli–Kohn–Nirenberg inequalities and superweights for Lp-weighted Hardy inequalities. Comptes Rendus. Mathématique, Volume 355 (2017) no. 6, pp. 694-698. doi : 10.1016/j.crma.2017.04.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2017.04.011/
[1] First order interpolation inequalities with weights, Compos. Math., Volume 53 (1984) no. 3, pp. 259-275
[2] Quantization on Nilpotent Lie Groups, Progress in Mathematics, vol. 314, Birkhäuser, 2016 (open access book)
[3] Hardy Spaces on Homogeneous Groups, Mathematical Notes, vol. 28, Princeton University Press, University of Tokyo Press, Princeton, NJ, USA, Tokyo, 1982
[4] Bessel pairs and optimal Hardy and Hardy–Rellich inequalities, Math. Ann., Volume 349 (2011) no. 1, pp. 1-57
[5]
[6] On horizontal Hardy, Rellich, Caffarelli–Kohn–Nirenberg and p-sub-Laplacian inequalities on stratified groups, J. Differ. Equ., Volume 262 (2017), pp. 1799-1821
[7] Layer potentials, Kac's problem, and refined Hardy inequality on homogeneous Carnot groups, Adv. Math., Volume 308 (2017), pp. 483-528
- HARDY INEQUALITIES AND IDENTITIES RELATED TO THE BAOUENDI-GRUSHIN VECTOR FIELDS AND LANDAU-HAMILTONIAN, Herald of the Kazakh-British technical university, Volume 21 (2024) no. 4, p. 153 | DOI:10.55452/1998-6688-2024-21-4-153-167
- Hardy-Leray inequalities in variable Lebesgue spaces, Journal of Mathematical Analysis and Applications, Volume 530 (2024) no. 2, p. 14 (Id/No 127747) | DOI:10.1016/j.jmaa.2023.127747 | Zbl:1526.35193
- Hypoelliptic functional inequalities, Mathematische Zeitschrift, Volume 307 (2024) no. 2, p. 41 (Id/No 22) | DOI:10.1007/s00209-024-03493-w | Zbl:1546.43007
- Anisotropic fractional Gagliardo-Nirenberg, weighted Caffarelli-Kohn-Nirenberg and Lyapunov-type inequalities, and applications to Riesz potentials and
-sub-Laplacian systems, Potential Analysis, Volume 59 (2023) no. 4, pp. 1971-1994 | DOI:10.1007/s11118-022-10029-6 | Zbl:1541.43012 - Rellich, Gagliardo-Nirenberg, Trudinger and Caffarelli-Kohn-Nirenberg inequalities for Dunkl operators and applications, Israel Journal of Mathematics, Volume 247 (2022) no. 2, pp. 741-782 | DOI:10.1007/s11856-021-2261-7 | Zbl:1512.46026
- Hardy, weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg type inequalities on Riemannian manifolds with negative curvature, Journal of Mathematical Analysis and Applications, Volume 507 (2022) no. 2, p. 21 (Id/No 125795) | DOI:10.1016/j.jmaa.2021.125795 | Zbl:1490.46032
- Sharp Caffarelli-Kohn-Nirenberg inequalities on Riemannian manifolds: the influence of curvature, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, Volume 152 (2022) no. 1, pp. 102-127 | DOI:10.1017/prm.2020.100 | Zbl:1504.53053
- Best constants in Sobolev and Gagliardo-Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 5, p. 22 (Id/No 175) | DOI:10.1007/s00526-020-01835-0 | Zbl:1453.35076
- Factorizations and Hardy-Rellich inequalities on stratified groups, Journal of Spectral Theory, Volume 10 (2020) no. 4, pp. 1361-1411 | DOI:10.4171/jst/330 | Zbl:1487.22011
- New progress on weighted Trudinger-Moser and Gagliardo-Nirenberg, and critical Hardy inequalities on stratified groups, Landscapes of time-frequency analysis. Based on talks given at the inaugural conference on aspects of time-frequency analysis, Turin, Italy, July 5–7, 2018, Cham: Birkhäuser, 2019, pp. 277-289 | DOI:10.1007/978-3-030-05210-2_11 | Zbl:1436.46041
- A note on Hardy inequalities on homogeneous groups, Potential Analysis, Volume 51 (2019) no. 3, pp. 425-435 | DOI:10.1007/s11118-018-9717-3 | Zbl:1427.43013
- Sharp Caffarelli-Kohn-Nirenberg inequalities on stratified Lie groups, Annales Academiae Scientiarum Fennicae. Mathematica, Volume 43 (2018) no. 2, pp. 1073-1083 | Zbl:1423.26031
- Hardy-Littlewood, Bessel-Riesz, and fractional integral operators in anisotropic Morrey and Campanato spaces, Fractional Calculus Applied Analysis, Volume 21 (2018) no. 3, pp. 577-612 | DOI:10.1515/fca-2018-0032 | Zbl:1406.22008
- Caffarelli–Kohn–Nirenberg inequalities on Lie groups of polynomial growth, Mathematische Nachrichten, Volume 291 (2018) no. 1, p. 204 | DOI:10.1002/mana.201700063
- Extended Caffarelli-Kohn-Nirenberg inequalities, and remainders, stability, and superweights for
-weighted Hardy inequalities, Transactions of the American Mathematical Society. Series B, Volume 5 (2018), pp. 32-62 | DOI:10.1090/btran/22 | Zbl:1383.22005 - Improved critical Hardy inequalities on 2-dimensional quasi-balls, International conference `Functional analysis in interdisciplinary applications', FAIA2017, Astana, Kazakhstan, October 2–5, 2017. Proceedings, Melville, NY: American Institute of Physics (AIP), 2017, p. 030007 | DOI:10.1063/1.5000606 | Zbl:1496.43004
- Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups, Advances in Mathematics, Volume 317 (2017), pp. 799-822 | DOI:10.1016/j.aim.2017.07.020 | Zbl:1376.22009
- Caffarelli-Kohn-Nirenberg and Sobolev type inequalities on stratified Lie groups, NoDEA. Nonlinear Differential Equations and Applications, Volume 24 (2017) no. 5, p. 12 (Id/No 56) | DOI:10.1007/s00030-017-0478-2 | Zbl:1386.22005
Cité par 18 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier