In 1985 Crapo introduced in [3] a new mathematical object that he called geometry of circuits. Four years later, in 1989, Manin and Schechtman defined in [13] the same object and called it discriminantal arrangement, the name by which it is known now a days. Those discriminantal arrangements
Révisé le :
Accepté le :
Publié le :
Simona Settepanella 1 ; So Yamagata 2

@article{CRMATH_2022__360_G9_1027_0, author = {Simona Settepanella and So Yamagata}, title = {On the non-very generic intersections in discriminantal arrangements}, journal = {Comptes Rendus. Math\'ematique}, pages = {1027--1038}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.360}, language = {en}, }
TY - JOUR AU - Simona Settepanella AU - So Yamagata TI - On the non-very generic intersections in discriminantal arrangements JO - Comptes Rendus. Mathématique PY - 2022 SP - 1027 EP - 1038 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.360 LA - en ID - CRMATH_2022__360_G9_1027_0 ER -
Simona Settepanella; So Yamagata. On the non-very generic intersections in discriminantal arrangements. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1027-1038. doi : 10.5802/crmath.360. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.360/
[1] The Largest Intersection Lattice of a Discriminantal Arrangement, Beitr. Algebra Geom., Volume 40 (1999) no. 2, pp. 283-289 | MR | Zbl
[2] Discriminantal arrangements, fiber polytopes and formality, J. Algebr. Comb., Volume 6 (1997) no. 3, pp. 229-246 | DOI | MR | Zbl
[3] The combinatorial theory of structures, Matroid theory (A. Recski; L. Locaśz, eds.) (Colloquia Mathematica Societatis János Bolyai), Volume 40, North-Holland, 1985, pp. 107-213 | MR | Zbl
[4] The resolving bracket, Invariant methods in discrete and computational geometry (Neil White, ed.), Kluwer Academic Publishers, 1995, pp. 197-222 | DOI | Zbl
[5] A note on discriminantal arrangements, Proc. Am. Math. Soc., Volume 122 (1994) no. 4, pp. 1221-1227 | DOI | MR | Zbl
[6] Zonotopes associated wuth hugher Bruhat orders, Discrete Math., Volume 241 (2001) no. 1-3, pp. 301-312 | DOI | Zbl
[7] Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results), Cah. Topologie Géom. Différ. Catég., Volume 32 (1991) no. 1, pp. 11-27 | Numdam | MR | Zbl
[8] Free
[9] Braided monoidal 2-categories and Manin-Schechtman higher braid groups, J. Pure Appl. Algebra, Volume 92 (1994) no. 3, pp. 241-267 | DOI | MR | Zbl
[10] Integrable connections related to Manin and Schechtman’s higher braid groups, Ill. J. Math., Volume 34 (1990) no. 2, pp. 476-484 | MR | Zbl
[11] A presentation for Manin and Schechtman’s higher braid groups (1991) MSRI pre-print (http://www.ma.huji.ac.il/~ruthel/papers/91premsh.html)
[12] Strata of discriminantal arrangements, J. Singul., Volume 18 (2018), pp. 440-454 (Volume in honor of E. Brieskorn) | MR | Zbl
[13] Arrangements of Hyperplanes, Higher Braid Groups and Higher Bruhat Orders, Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press, 1989, pp. 289-308 | DOI | MR | Zbl
[14] Introduction to Arrangements, Regional Conference Series in Mathematics, 72, American Mathematical Society, 1989 | DOI | Zbl
[15] Arrangements of Hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer, 1992 | DOI | Zbl
[16] Divisorial cohomology vanishing on toric varieties, Doc. Math., Volume 16 (2011), pp. 209-251 | MR | Zbl
[17] Discriminantal arrangement, 3×3 minors of Plücker matrix and hypersurfaces in Grassmannian Gr(3,n), C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 11, pp. 1111-1120 | DOI | Zbl
[18] Pappus’s Theorem in Grassmannian
[19] Higher Bruhat orders and cyclic hyperplane arrangements, Topology, Volume 32 (1993) no. 2, pp. 259-279 | DOI | MR | Zbl
- The generalized Sylvester's and orchard problems via discriminantal arrangement, Innovations in Incidence Geometry, Volume 21 (2024) no. 1, pp. 117-130 | DOI:10.2140/iig.2024.21.117 | Zbl:1544.05022
- Likelihood degenerations, Advances in Mathematics, Volume 414 (2023), p. 39 (Id/No 108863) | DOI:10.1016/j.aim.2023.108863 | Zbl:1535.14106
- A classification of combinatorial types of discriminantal arrangements, Journal of Algebraic Combinatorics, Volume 57 (2023) no. 4, pp. 1007-1032 | DOI:10.1007/s10801-022-01207-1 | Zbl:1516.52016
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique