Comptes Rendus
Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements
[Modélisation de la viscoélasticité transverse du bois vert à l'aide d'une combinaison de deux éléments paraboliques]
Comptes Rendus. Mécanique, Volume 330 (2002) no. 8, pp. 549-556.

Le module de rigidité en compression radiale a été mesuré à différents niveaux de température et de vitesse de sollicitation sur des échantillons de Boco à l'état vert. La chute importante du module autour de 60C est attribuée à la transition vitreuse des lignines. La représentation des résultats expérimentaux dans un plan complexe approché fait apparaı̂tre un deuxième mécanisme viscoélastique à basse température. Un modèle biparabolique permet d'interpréter les résultats. Chaque élément parabolique est remplacé par un modèle de Maxwell généralisé avec spectre quasi-gaussien des rigidités. Ce modèle représente correctement le comportement du bois observé expérimentalement pour une plage de temps comprise entre 0,05 s et 50 s et pour une température comprise entre 10 et 90C.

The rigidity in radial compression at different levels of temperature and strain rate have been measured on green Boco, with a drastic softening around 60C attributed to the glassy transition of lignin. The representation of experimental results in an approximated complex diagram revealed a secondary viscoelastic process occurring at lower temperature. A multiparabolic model was used for the analysis. For convenience, each parabolic element was replaced by a generalised Maxwell model with a modified-Gaussian relaxation spectrum. This model fitted correctly the observed behaviour of wood in the time range of 0.05 to 50 sec and temperature between 10 to 90C.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0721(02)01503-6
Keywords: rheology, wood, viscoelasticity, compression tests, temperature, modelling
Mots-clés : rhéologie, bois, viscoélasticité, essais de compression, température, modélisation

Sandrine Bardet 1 ; Joseph Gril 1

1 Laboratoire de mécanique et génie civil, Équipe Bois, Université Montpellier 2, CC081, place E. Bataillon, 34095 Montpellier cedex 5, France
@article{CRMECA_2002__330_8_549_0,
     author = {Sandrine Bardet and Joseph Gril},
     title = {Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {549--556},
     publisher = {Elsevier},
     volume = {330},
     number = {8},
     year = {2002},
     doi = {10.1016/S1631-0721(02)01503-6},
     language = {en},
}
TY  - JOUR
AU  - Sandrine Bardet
AU  - Joseph Gril
TI  - Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements
JO  - Comptes Rendus. Mécanique
PY  - 2002
SP  - 549
EP  - 556
VL  - 330
IS  - 8
PB  - Elsevier
DO  - 10.1016/S1631-0721(02)01503-6
LA  - en
ID  - CRMECA_2002__330_8_549_0
ER  - 
%0 Journal Article
%A Sandrine Bardet
%A Joseph Gril
%T Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements
%J Comptes Rendus. Mécanique
%D 2002
%P 549-556
%V 330
%N 8
%I Elsevier
%R 10.1016/S1631-0721(02)01503-6
%G en
%F CRMECA_2002__330_8_549_0
Sandrine Bardet; Joseph Gril. Modelling the transverse viscoelasticity of green wood using a combination of two parabolic elements. Comptes Rendus. Mécanique, Volume 330 (2002) no. 8, pp. 549-556. doi : 10.1016/S1631-0721(02)01503-6. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01503-6/

[1] J. Gril Principles of mechano-sorption (S. Aicher, ed.), International Conference on Wood Mechanics, Stuttgart, Germany, 14–16 May 1996, FMPA-Otto-Graf-Institut, 1996, pp. 1-16

[2] J. Gril; M. Fournier Contraintes d'élaboration du bois dans l'arbre : un modèle multicouche viscoélastique, 11ème Congrès Français de Mécanique, Lille–Villeneuve d'Ascq ( 6–10 September 1993 ), pp. 165-168

[3] J. Gril; B. Thibaut Tree mechanics and wood mechanics: relating hygrothermal recovery of green wood to the maturation process, Ann. Sci. Forestières, Volume 51 (1994), pp. 329-338

[4] B. Thibaut; J. Gril; M. Fournier Mechanics of wood and trees: some new highlights for an old story, C. R. Acad. Sci. Paris, Série IIb, Volume 329 (2001), pp. 701-716

[5] C. Huet; P. Navi Multiparabolic multitransition model for thermo-viscoelastic behaviour of wood, The Winter Annual Meeting of the ASME, Dallas, Texas ( 25–30 November 1990 ), pp. 17-24

[6] E.L. Back; L. Salmen Glass transitions of wood components hold implications for molding and pulping processes, Tappi J., Volume 7 (1982), pp. 107-110

[7] D.A.I. Goring Thermal softening of lignin, hemicellulose and cellulose, Pulp and Paper Magazine of Canada, Volume 64 (1963), p. T517-T527

[8] L. Salmen Viscoelastic properties of in situ lignin under water-saturated conditions, J. Material Sci., Volume 19 (1984), pp. 3090-3096

[9] C. Huet Some aspects of the thermo-hygro-viscoelastic behaviour of wood (P. Morlierr, ed.), Mechanical Behaviour of Wood, Bordeaux, 8–9 June 1988 , pp. 104-118

[10] C. Huet Représentation des modules et complaisances complexes dans les plans complexes arithmétique et logarithmique, Cahiers du groupe français de rhéologie, Volume 1 (1967) no. 5, pp. 237-258

[11] T. Alfrey Mechanical Behaviour of High Polymers, Interscience, New York, 1948 (p. 581)

[12] A.S. Nowick; B.S. Berry Anelastic Relaxation in Crystalline Solids, Academic Press, 1972 (p. 677)

  • Anna Stankiewicz Direct Identification of the Continuous Relaxation Time and Frequency Spectra of Viscoelastic Materials, Materials, Volume 17 (2024) no. 19, p. 4870 | DOI:10.3390/ma17194870
  • Anna Stankiewicz Sampling Points-Independent Identification of the Fractional Maxwell Model of Viscoelastic Materials Based on Stress Relaxation Experiment Data, Materials, Volume 17 (2024) no. 7, p. 1527 | DOI:10.3390/ma17071527
  • Anna Stankiewicz Robust Recovery of Optimally Smoothed Polymer Relaxation Spectrum from Stress Relaxation Test Measurements, Polymers, Volume 16 (2024) no. 16, p. 2300 | DOI:10.3390/polym16162300
  • Anna Stankiewicz Two-Level Scheme for Identification of the Relaxation Time Spectrum Using Stress Relaxation Test Data with the Optimal Choice of the Time-Scale Factor, Materials, Volume 16 (2023) no. 9, p. 3565 | DOI:10.3390/ma16093565
  • Anna Stankiewicz On Applicability of the Relaxation Spectrum of Fractional Maxwell Model to Description of Unimodal Relaxation Spectra of Polymers, Polymers, Volume 15 (2023) no. 17, p. 3552 | DOI:10.3390/polym15173552
  • Anna Stankiewicz; Sławomir Juściński How to Make the Stress Relaxation Experiment for Polymers More Informative, Polymers, Volume 15 (2023) no. 23, p. 4605 | DOI:10.3390/polym15234605
  • Kareem Elsayad; Georg Urstöger; Caterina Czibula; Christian Teichert; Jaromir Gumulec; Jan Balvan; Michael Pohlt; Ulrich Hirn Mechanical Properties of cellulose fibers measured by Brillouin spectroscopy, Cellulose, Volume 27 (2020) no. 8, p. 4209 | DOI:10.1007/s10570-020-03075-z
  • Caterina Czibula; Christian Ganser; Tristan Seidlhofer; Christian Teichert; Ulrich Hirn Transverse viscoelastic properties of pulp fibers investigated with an atomic force microscopy method, Journal of Materials Science, Volume 54 (2019) no. 17, p. 11448 | DOI:10.1007/s10853-019-03707-1
  • R. Longo; D. Laux; S. Pagano; T. Delaunay; E. Le Clézio; O. Arnould Elastic characterization of wood by Resonant Ultrasound Spectroscopy (RUS): a comprehensive study, Wood Science and Technology, Volume 52 (2018) no. 2, p. 383 | DOI:10.1007/s00226-017-0980-z
  • Tianyi Zhan; Jiali Jiang; Hui Peng; Jianxiong Lu Evidence of mechano-sorptive effect during moisture adsorption process under hygrothermal conditions: Characterized by static and dynamic loadings, Thermochimica Acta, Volume 633 (2016), p. 91 | DOI:10.1016/j.tca.2016.02.003
  • Ousseynou Cisse; Vincent Placet; Violaine Guicheret-Retel; Frédérique Trivaudey; M. Lamine Boubakar Creep behaviour of single hemp fibres. Part I: viscoelastic properties and their scattering under constant climate, Journal of Materials Science, Volume 50 (2015) no. 4, p. 1996 | DOI:10.1007/s10853-014-8767-1
  • Erasmo Cataldo; Salvatore Di Lorenzo; Vincenzo Fiore; Mirko Maurici; Francesco Nicoletti; Antonina Pirrotta; Roberto Scaffaro; Antonino Valenza Bending test for capturing the vivid behavior of giant reeds, returned through a proper fractional visco-elastic model, Mechanics of Materials, Volume 89 (2015), p. 159 | DOI:10.1016/j.mechmat.2015.06.006
  • J. Colmars; F. Dubois; J. Gril One-dimensional discrete formulation of a hygrolock model for wood hygromechanics, Mechanics of Time-Dependent Materials, Volume 18 (2014) no. 1, p. 309 | DOI:10.1007/s11043-013-9229-x
  • Giacomo Goli; Bertrand Marcon; Marco Fioravanti Poplar wood heat treatment: effect of air ventilation rate and initial moisture content on reaction kinetics, physical and mechanical properties, Wood Science and Technology, Volume 48 (2014) no. 6, p. 1303 | DOI:10.1007/s00226-014-0677-5
  • K. de Borst; C. Jenkel; C. Montero; J. Colmars; J. Gril; M. Kaliske; J. Eberhardsteiner Mechanical characterization of wood: An integrative approach ranging from nanoscale to structure, Computers Structures, Volume 127 (2013), p. 53 | DOI:10.1016/j.compstruc.2012.11.019
  • Elasto-viscoplasticity of wood, Thermo-Hydro-Mechanical Wood Processing (2012) | DOI:10.1201/b10143-5
  • Jana Dlouhá; Joseph Gril; Bruno Clair; Tancrède Alméras Evidence and modelling of physical aging in green wood, Rheologica Acta, Volume 48 (2009) no. 3, p. 333 | DOI:10.1007/s00397-008-0325-9

Cité par 17 documents. Sources : Crossref

Commentaires - Politique