[Mise en équilibre et propriétés dynamiques d'un fluide près du point critique liquide–vapeur]
Une revue est présentée sur les avancées dans la compréhension des phénomènes de retour à l'équilibre en fluide compressible pur, près du point critique liquide–vapeur. L'accent est mis sur l'importance de l'effet piston. Sont traités le retour à l'équilibre de la température et de la masse volumique d'échantillons à volume constant. Des exemples sont donnés au-dessus et en-dessous du point critique, sous gravité normale (1 g) et en microgravité. Le bon accord entre les résultats expérimentaux et les simulations prouve la validité de la modélisation. Les transitions d'un fluide pur dans une cellule de Rayleigh–Bénard sont décrites sous 1 g. Est étudiée également l'influence de l'effet piston sur la transition qui conduit à la convection stationnaire via des oscillations amorties. Les résultats expérimentaux et ceux des simulations numériques sont comparés dans ce cas également.
A review is presented on the advances in understanding equilibration phenomena in compressible pure fluids near the liquid–vapor critical point. The important role of the piston effect is stressed. The equilibration of temperature and density of a fluid sample, kept in a constant volume, are described. Examples are given both above and below the critical point under Earth's gravity (1 g) and microgravity conditions. The good agreement between experimental results and simulations demonstrate the present understanding of the process. The convection onset of a compressible pure fluid in a Rayleigh–Bénard cell at 1 g is described. The impact of the piston effect on the transient, which leads to damped oscillations on the way to reaching a steady state convection, is also described. Here again the results of experiments and numerical simulations are compared.
Mot clés : Mécanique des fluides, Fluide supercritique, Équilibre, Effet piston, Microgravité, Configuration Rayleigh–Bénard, Instabilité convective, Simulations numériques
Horst Meyer 1 ; Fang Zhong 2
@article{CRMECA_2004__332_5-6_327_0, author = {Horst Meyer and Fang Zhong}, title = {Equilibration and other dynamic properties of fluids near the~liquid{\textendash}vapor critical point}, journal = {Comptes Rendus. M\'ecanique}, pages = {327--343}, publisher = {Elsevier}, volume = {332}, number = {5-6}, year = {2004}, doi = {10.1016/j.crme.2004.02.006}, language = {en}, }
TY - JOUR AU - Horst Meyer AU - Fang Zhong TI - Equilibration and other dynamic properties of fluids near the liquid–vapor critical point JO - Comptes Rendus. Mécanique PY - 2004 SP - 327 EP - 343 VL - 332 IS - 5-6 PB - Elsevier DO - 10.1016/j.crme.2004.02.006 LA - en ID - CRMECA_2004__332_5-6_327_0 ER -
Horst Meyer; Fang Zhong. Equilibration and other dynamic properties of fluids near the liquid–vapor critical point. Comptes Rendus. Mécanique, Volume 332 (2004) no. 5-6, pp. 327-343. doi : 10.1016/j.crme.2004.02.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.02.006/
[1] Equilibration Near the Critical Point, Workshop held at the National Institute of Standards and Technology (NIST), Gaithersburg, MA, March 16–17, 1989, R.F. Berg, M.R. Moldover, Chairs of Organizing Committee
[2] C. R. Mécanique, 331 (2003), p. 713
[3] Proceedings of the Sixth European Symposium on Material Sciences under Microgravity Conditions, Bordeaux, France, 1986 (European Space Agency, Paris), vol. SP-256, 88 (1987), p. 109 (See also Fluid Phase Equilibria, 1993, pp. 183)
[4] Int. J. Thermophys., 16 (1995), p. 1033
[5] J. Low Temp. Phys., 46 (1982), p. 115
[6] Phys. Rev. A, 41 (1990), p. 2256
[7] Physica A, 164 (1990), p. 245
[8] Phys. Rev. A, 41 (1990), p. 2260
[9] Phys. Rev. A, 41 (1990), p. 2264
[10] J. Low Temp. Phys., 81 (1990), p. 71
[11] Phys. Fluids, 4 (1992), p. 1040
[12] Int. J. Thermophys., 51 (1995), p. 5556
[13] Phys. Rev. E, 52 (1995), p. 1614
[14] Phys. Rev. Lett., 65 (1990), p. 2654
[15] Phys. Rev. E, 47 (1993), p. 1531
[16] Phys. Rev. E, 51 (1995), p. 3223
[17] J. Low Temp. Phys., 112 (1998), p. 419
[18] J. Low Temp. Phys., 108 (1997), p. 161
[19] J. Low Temp. Phys., 114 (1999), p. 231
[20] Phys. Rev. E, 57 (1998), p. 436
[21] Phys. Rev. E, 53 (1996), p. 5935
[22] Phys. Rev. Lett., 84 (2000), p. 1400
[23] Int. J. Thermophys., 23 (2002), p. 103
[24] Phys. Rev. E, 59 (1999), p. 1795
[25] Rev. Mod. Phys., 34 (1971), p. 305
[26] Physica D, 126 (1999), p. 69
[27] Course of Theoretical Physics, vol. 6, Fluid Mechanics, Pergamon, Oxford, 1959
[28] Physical Fluid Dynamics, Oxford Science, Oxford, 1988 (Section 14.6)
[29] Rev. Mod. Phys., 57 (1985), p. 657
[30] Phys. Rev. E, 63 (2001), p. 056310
[31] Phys. Rev. E, 66 (2002), p. 056310
[32] Phys. Rev. Lett., 87 (2001), p. 144301
[33] Phys. Rev. E, 66 (2002), p. 016302
[34] S. Amiroudine, private communication
[35] Phys. Rev. E, 66 (2002), p. 066309
[36] Phys. Rev. E, 68 (2003), p. 056309
Cité par Sources :
Commentaires - Politique