Comptes Rendus
Large-amplitude internal solitary waves in a two-fluid model
[Ondes solitaires internes de grande amplitude dans un modèle à deux fluides]
Comptes Rendus. Mécanique, Volume 334 (2006) no. 6, pp. 341-346.

Nous calculons numériquement des solutions en ondes solitaires d'un modèle hamiltonien décrivant les ondes internes longues de grande amplitude dans un milieu stratifié à deux couches. Ces solutions numériques sont calculées pour des valeurs de rapports de densité et de profondeur proches des conditions océaniques, et sont comparées avec les solutions de modèles faiblement et pleinement non-linéaires. Les résultats montrent que le modèle reproduit bien les caractéristiques des ondes solitaires fortement non-linéaires telles que le phénomène d'élargissement.

We compute solitary wave solutions of a Hamiltonian model for large-amplitude long internal waves in a two-layer stratification. Computations are performed for values of the density and depth ratios close to oceanic conditions, and comparisons are made with solutions of both weakly and fully nonlinear models. It is shown that characteristic features of highly nonlinear solitary waves such as broadening are reproduced well by the present model.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2006.05.001
Keywords: Fluid mechanics, Internal waves, Solitary waves, Hamiltonian systems
Mots-clés : Mécanique des fluides, Ondes internes, Ondes solitaires, Systèmes hamiltoniens

Philippe Guyenne 1

1 Department of Mathematical Sciences, 501 Ewing Hall, University of Delaware, Newark, DE 19716-2553, USA
@article{CRMECA_2006__334_6_341_0,
     author = {Philippe Guyenne},
     title = {Large-amplitude internal solitary waves in a two-fluid model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {341--346},
     publisher = {Elsevier},
     volume = {334},
     number = {6},
     year = {2006},
     doi = {10.1016/j.crme.2006.05.001},
     language = {en},
}
TY  - JOUR
AU  - Philippe Guyenne
TI  - Large-amplitude internal solitary waves in a two-fluid model
JO  - Comptes Rendus. Mécanique
PY  - 2006
SP  - 341
EP  - 346
VL  - 334
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2006.05.001
LA  - en
ID  - CRMECA_2006__334_6_341_0
ER  - 
%0 Journal Article
%A Philippe Guyenne
%T Large-amplitude internal solitary waves in a two-fluid model
%J Comptes Rendus. Mécanique
%D 2006
%P 341-346
%V 334
%N 6
%I Elsevier
%R 10.1016/j.crme.2006.05.001
%G en
%F CRMECA_2006__334_6_341_0
Philippe Guyenne. Large-amplitude internal solitary waves in a two-fluid model. Comptes Rendus. Mécanique, Volume 334 (2006) no. 6, pp. 341-346. doi : 10.1016/j.crme.2006.05.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2006.05.001/

[1] K.R. Helfrich; W.K. Melville Long nonlinear internal waves, Annu. Rev. Fluid Mech., Volume 38 (2006), pp. 395-425

[2] W.A.B. Evans; M.J. Ford An integral equation approach to internal (2-layer) solitary waves, Phys. Fluids, Volume 8 (1996), pp. 2032-2047

[3] O. Laget; F. Dias Numerical computation of capillary-gravity interfacial solitary waves, J. Fluid Mech., Volume 349 (1997), pp. 221-251

[4] H. Michallet; E. Barthélémy Experimental study of interfacial solitary waves, J. Fluid Mech., Volume 366 (1998), pp. 159-177

[5] J. Grue; A. Jensen; P.-O. Rusås; J.K. Sveen Properties of large-amplitude internal waves, J. Fluid Mech., Volume 380 (1999), pp. 257-278

[6] P.-O. Rusås; J. Grue Solitary waves and conjugate flows in a three-layer fluid, Eur. J. Mech. B/Fluids, Volume 21 (2002), pp. 185-206

[7] F. Dias; J.-M. Vanden-Broeck On internal fronts, J. Fluid Mech., Volume 479 (2003), pp. 145-154

[8] W. Choi; R. Camassa Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., Volume 396 (1999), pp. 1-36

[9] L.A. Ostrovsky; J. Grue Evolution equations for strongly nonlinear internal waves, Phys. Fluids, Volume 15 (2003), pp. 2934-2948

[10] R. Camassa; W. Choi; H. Michallet; P.-O. Rusås; J.K. Sveen On the realm of validity of strongly nonlinear asymptotic approximations for internal waves, J. Fluid Mech., Volume 549 (2006), pp. 1-23

[11] W. Craig; P. Guyenne; H. Kalisch A new model for large amplitude long internal waves, C. R. Mecanique, Volume 332 (2004), pp. 525-530

[12] W. Craig; P. Guyenne; H. Kalisch Hamiltonian long wave expansions for free surfaces and interfaces, Comm. Pure Appl. Math., Volume 58 (2005), pp. 1587-1641

[13] T.P. Stanton; L.A. Ostrovsky Observations of highly nonlinear internal solitons over the continental shelf, Geophys. Res. Lett., Volume 25 (1998), pp. 2696-2698

[14] R. Grimshaw; D. Pelinovsky; E. Pelinovsky; A. Slunyaev Generation of large-amplitude solitons in the extended Korteweg–de Vries equation, Chaos, Volume 12 (2002), pp. 1070-1076

[15] R. Grimshaw; D. Pullin Extreme interfacial waves, Phys. Fluids, Volume 29 (1986), pp. 2802-2807

[16] R.E.L. Turner; J.-M. Vanden-Broeck Broadening of interfacial solitary waves, Phys. Fluids, Volume 31 (1988), pp. 2486-2490

[17] K.G. Lamb; B. Wan Conjugate flows and flat solitary waves for a continuously stratified fluid, Phys. Fluids, Volume 10 (1998), pp. 2061-2079

  • Philippe Guyenne A boundary perturbation method to simulate nonlinear deformations of a two-dimensional bubble, International Journal of Multiphase Flow, Volume 173 (2024), p. 104749 | DOI:10.1016/j.ijmultiphaseflow.2024.104749
  • Na Qiu; Xiuquan Liu; Yanwei Li; Pengji Hu; Yuanjiang Chang; Guoming Chen; Huixing Meng Dynamic catastrophe analysis of deepwater mooring platform/riser/wellhead coupled system under ISW, Reliability Engineering System Safety, Volume 246 (2024), p. 110084 | DOI:10.1016/j.ress.2024.110084
  • Haomin Chen; Zhifeng Wang; Junnan Cui; Haofeng Xia; Wuhong Guo Application of different internal solitary wave theories for SAR remote sensing inversion in the northern South China Sea, Ocean Engineering, Volume 283 (2023), p. 115015 | DOI:10.1016/j.oceaneng.2023.115015
  • Boyang Xu; Philippe Guyenne Assessment of a porous viscoelastic model for wave attenuation in ice-covered seas, Applied Ocean Research, Volume 122 (2022), p. 103122 | DOI:10.1016/j.apor.2022.103122
  • Junnan Cui; Sheng Dong; Zhifeng Wang Study on applicability of internal solitary wave theories by theoretical and numerical method, Applied Ocean Research, Volume 111 (2021), p. 102629 | DOI:10.1016/j.apor.2021.102629
  • Shaofeng Li; Anzhou Cao; Jinbao Song; Chengcheng Yu; Juan Chen Evolution and modulational instability of interfacial waves in a two-layer fluid with arbitrary layer depths, Physics of Fluids, Volume 32 (2020) no. 7 | DOI:10.1063/5.0013225
  • Hua Chen; Robert P. Gilbert; Philippe Guyenne Dispersion and attenuation in a porous viscoelastic model for gravity waves on an ice-covered ocean, European Journal of Mechanics - B/Fluids, Volume 78 (2019), p. 88 | DOI:10.1016/j.euromechflu.2019.06.002
  • Xu Wang; Jifu Zhou; Yunxiang You A numerical wave-maker for internal solitary waves with timely updated mass source/sink terms, European Journal of Mechanics - B/Fluids, Volume 65 (2017), p. 274 | DOI:10.1016/j.euromechflu.2017.04.005
  • Y. Mark; T. Miloh On periodic solutions of interfacial waves of finite amplitude, European Journal of Mechanics - B/Fluids, Volume 49 (2015), p. 58 | DOI:10.1016/j.euromechflu.2014.07.009
  • O. E. Kurkina; A. A. Kurkin; E. A. Rouvinskaya; T. Soomere Propagation regimes of interfacial solitary waves in a three-layer fluid, Nonlinear Processes in Geophysics, Volume 22 (2015) no. 2, p. 117 | DOI:10.5194/npg-22-117-2015
  • Vincent Duchêne Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 1, p. 145 | DOI:10.1051/m2an/2011037
  • O. E. Kurkina; A. A. Kurkin; T. Soomere; E. N. Pelinovsky; E. A. Rouvinskaya Higher-order (2 + 4) Korteweg-de Vries-like equation for interfacial waves in a symmetric three-layer fluid, Physics of Fluids, Volume 23 (2011) no. 11 | DOI:10.1063/1.3657816
  • Philippe Guyenne; David Lannes; Jean-Claude Saut Well-posedness of the Cauchy problem for models of large amplitude internal waves, Nonlinearity, Volume 23 (2010) no. 2, p. 237 | DOI:10.1088/0951-7715/23/2/003
  • Ricardo Barros; Sergey Gavrilyuk Dispersive Nonlinear Waves in Two‐Layer Flows with Free Surface Part II. Large Amplitude Solitary Waves Embedded into the Continuous Spectrum, Studies in Applied Mathematics, Volume 119 (2007) no. 3, p. 213 | DOI:10.1111/j.1467-9590.2007.00384.x

Cité par 14 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: