[Identification de fissures par sensibilité topologique dynamique en élasticité ou acoustique tridimensionnelle]
L'analyse de sensibilité topologique, reposant sur le comportement asymptotique d'une fonction coût associée à la création d'un défaut virtuel infinitésimal dans un solide sain, fournit une méthode de calcul rapide et non itératif de construction d'une fonction indicatrice de défauts. Dans cette Note, consacrée à l'identification de fissures, le gradient topologique d'une fonctionnelle coût quelconque par rapport à l'apparition d'une fissure de taille infinitésimale est établi pour l'élastodynamique lineaire et l'acoustique. Les développements présentés reposent sur l'utilisation d'un état adjoint pour plus de simplicité et d'efficacité. Un exemple numérique en élastodynamique tridimensionnelle, basé sur une méthode d'éléments finis standard, valide l'intérêt de l'approche proposée.
The topological sensitivity analysis, based on the asymptotic behavior of a cost functional associated with the creation of a small trial flaw in a defect-free solid, provides a computationally-fast, non-iterative approach for identifying flaws embedded in solids. This concept is here considered for crack identification using time-dependent measurements on the external boundary. The topological derivative of a cost function under the nucleation of a crack of infinitesimal size is established, in the framework of time-domain elasticity or acoustics. The simplicity and efficiency of the proposed formulation is enhanced by the recourse to an adjoint solution. Numerical results obtained on a 3-D elastodynamic example using the conventional FEM demonstrate the usefulness of the topological derivative as a crack indicator function.
Accepté le :
Publié le :
Mots-clés : Mécanique des solides numérique, Sensibilité topologique, Elastodynamique, Identification de fissure, Etat adjoint
Cédric Bellis 1 ; Marc Bonnet 1
@article{CRMECA_2009__337_3_124_0, author = {C\'edric Bellis and Marc Bonnet}, title = {Crack identification by {3D} time-domain elastic or acoustic topological sensitivity}, journal = {Comptes Rendus. M\'ecanique}, pages = {124--130}, publisher = {Elsevier}, volume = {337}, number = {3}, year = {2009}, doi = {10.1016/j.crme.2009.03.015}, language = {en}, }
Cédric Bellis; Marc Bonnet. Crack identification by 3D time-domain elastic or acoustic topological sensitivity. Comptes Rendus. Mécanique, Volume 337 (2009) no. 3, pp. 124-130. doi : 10.1016/j.crme.2009.03.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.03.015/
[1] Topological sensitivity for 3D elastodynamics and acoustic inverse scattering in the time domain, Comput. Methods Appl. Mech. Engrg., Volume 195 (2006), pp. 5239-5254
[2] Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection, Wave Motion, Volume 42 (2005), pp. 31-52
[3] Identification of cracks and cavities using the topological sensitivity boundary integral equation, Comp. Mech., Volume 33 (2004), pp. 154-163
[4] Reconstruction of elastic inclusions of small volume via dynamic measurements, Appl. Math. Optim., Volume 54 (2006), pp. 223-235
[5] Asymptotic imaging of perfectly conducting cracks, 2009 http://www.cmap.polytechnique.fr/~ammari/preprints (preprint)
[6] Reciprocity in Elastodynamics, Cambridge University Press, 2003
[7] Boundary Integral Equations Methods for Solids and Fluids, Wiley, 1999
[8] Transient anomaly imaging by the acoustic radiation force, 2009 http://www.cmap.polytechnique.fr/~ammari/preprints (preprint)
[9] Mécanique de la rupture fragilel, Masson, 1978
[10] Topological sensitivity analysis in the context of ultrasonic non-destructive testing, Eng. Anal. Boundary Elem., Volume 32 (2008), pp. 936-947
- Identification of inclusions of arbitrary geometry with different physical properties of materials in 3D structures, International Journal of Mechanics and Materials in Design, Volume 21 (2025) no. 1, p. 53 | DOI:10.1007/s10999-024-09727-3
- Ultrasound transmission and reflection tomography for nondestructive testing using experimental data, Ultrasonics, Volume 124 (2022), p. 106765 | DOI:10.1016/j.ultras.2022.106765
- Determining Geometric-Acoustic Properties of a Weld as a Solution to the Inverse Coefficient Problem for a Scalar Wave Equation, Russian Journal of Nondestructive Testing, Volume 57 (2021) no. 11, p. 933 | DOI:10.1134/s1061830921110036
- Inverse Problems of Ultrasonic Tomography in Nondestructive Testing: Mathematical Methods and Experiment, Russian Journal of Nondestructive Testing, Volume 55 (2019) no. 6, p. 453 | DOI:10.1134/s1061830919060020
- Solving Inverse Problems of Ultrasound Tomography in a Nondestructive Testing on a Supercomputer, Supercomputing, Volume 1129 (2019), p. 392 | DOI:10.1007/978-3-030-36592-9_32
- Estimation analysis of a defect depth in a concrete based on the adjoint variable method (Numerical experiment assuming observed displacement by the hammering test), Transactions of the JSME (in Japanese), Volume 85 (2019) no. 869, p. 18-00371 | DOI:10.1299/transjsme.18-00371
- A synoptic approach to the seismic sensing of heterogeneous fractures: From geometric reconstruction to interfacial characterization, Computer Methods in Applied Mechanics and Engineering, Volume 324 (2017), p. 395 | DOI:10.1016/j.cma.2017.06.002
- DETERMINATION OF VARIOUS TYPES OF CRACKS IN A 2-D SCALAR WAVE FIELD USING TOPOLOGICAL DERIVATIVE, Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)), Volume 73 (2017) no. 2, p. I_255 | DOI:10.2208/jscejam.73.i_255
- A survey on theoretical and practical aspects of imaging aids for artificial vision in professional environments, IEEE Sensors Journal (2015), p. 1 | DOI:10.1109/jsen.2015.2390921
- On the elastic-wave imaging and characterization of fractures with specific stiffness, International Journal of Solids and Structures, Volume 71 (2015), p. 126 | DOI:10.1016/j.ijsolstr.2015.06.014
- Introduction to Identification Methods, Full‐Field Measurements and Identification in Solid Mechanics (2013), p. 223 | DOI:10.1002/9781118578469.ch8
- A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data, International Journal of Solids and Structures, Volume 47 (2010) no. 9, p. 1221 | DOI:10.1016/j.ijsolstr.2010.01.011
- On the topological derivative due to kink of a crack with non-penetration. Anti-plane model, Journal de Mathématiques Pures et Appliquées, Volume 94 (2010) no. 6, p. 571 | DOI:10.1016/j.matpur.2010.06.002
Cité par 13 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier