[Détermination de la perméabilité d'un milieu poreux périodique pour un écoulement de Stokes avec glissement par une méthode basée sur la FFT]
Cette Note présente une méthode basée sur la FFT pour la détermination de la perméabilité d'un milieu poreux périodique. Le milieu poreux est constitué d'une matrice solide indéformable saturée par un fluide visqueux. L'écoulement obéit aux équations de Stokes et une condition de glissement sur la surface du squelette solide est également considérée. La perméabilité est alors obtenue en résolvant les équations issues de l'homogénéisation de milieux périodiques et par une extension de la méthode FFT utilisée pour les matériaux composites élastiques périodiques. La prise en compte de la condition de glissement est effectuée en introduisant une interphase entre le fluide visqueux et le solide. La méthode repose sur une représentation du champ de vitesses en séries de Fourier et sur l'expression explicite du tenseur de Green dans l'espace de Fourier.
This Note presents a FFT based-method for obtaining the permeability of a periodic micro-porous medium. The periodic medium is constituted of a rigid solid matrix saturated by a viscous fluid. The flow obeys the Stokes equations and a slip condition at the surface of the rigid skeleton is considered. The permeability is obtained from the homogenization of periodic media and an extension of the FFT method used for composite elastic media. The incorporation of the slip condition is made through the introduction of an interphase between the fluid and the solid. The method of solution uses the classical expansion along Neumann series of the velocity field of the periodic problem and Green's tensor in Fourier space.
Accepté le :
Publié le :
Mots-clés : Milieux poreux, Homogénéisation, Propriétés effectives, Perméabilité, Fluide visqueux
Vincent Monchiet 1 ; Guy Bonnet 1 ; Guy Lauriat 1
@article{CRMECA_2009__337_4_192_0, author = {Vincent Monchiet and Guy Bonnet and Guy Lauriat}, title = {A {FFT-based} method to compute the permeability induced by a {Stokes} slip flow through a porous medium}, journal = {Comptes Rendus. M\'ecanique}, pages = {192--197}, publisher = {Elsevier}, volume = {337}, number = {4}, year = {2009}, doi = {10.1016/j.crme.2009.04.003}, language = {en}, }
TY - JOUR AU - Vincent Monchiet AU - Guy Bonnet AU - Guy Lauriat TI - A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium JO - Comptes Rendus. Mécanique PY - 2009 SP - 192 EP - 197 VL - 337 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2009.04.003 LA - en ID - CRMECA_2009__337_4_192_0 ER -
%0 Journal Article %A Vincent Monchiet %A Guy Bonnet %A Guy Lauriat %T A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium %J Comptes Rendus. Mécanique %D 2009 %P 192-197 %V 337 %N 4 %I Elsevier %R 10.1016/j.crme.2009.04.003 %G en %F CRMECA_2009__337_4_192_0
Vincent Monchiet; Guy Bonnet; Guy Lauriat. A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium. Comptes Rendus. Mécanique, Volume 337 (2009) no. 4, pp. 192-197. doi : 10.1016/j.crme.2009.04.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.04.003/
[1] Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiphase Flow, Volume 8 (1982), pp. 193-206
[2] Détermination numérique de la perméabilité en milieu poreux périodique tridimensionnel, C. R. Acad. Sci. Paris, Sér. II, Volume 310 (1990), pp. 347-352
[3] Stokes flow through a rectangular array of circular cylinders, Fluid Dyn. Res., Volume 29 (2001), pp. 65-80
[4] Permeability of periodic arrays of spheres, Mech. Res. Commun., Volume 32 (2007), pp. 659-665
[5] Stokes slip flow through square and triangular arrays of circular cylinders, Fluid Dyn. Res., Volume 32 (2003), pp. 233-246
[6] A fast numerical method for computing the linear and nonlinear properties of composites, C. R. Acad. Sci. Paris, Sér. II, Volume 318 (1994), pp. 1417-1423
[7] Solid mixture permittivities, J. Comput. Math., Volume 23 (1955), pp. 1514-1517
[8] Statistical Continuum Mechanics, Springer-Verlag, Wien, 1972
[9] A computational scheme for linear and non-linear composites with arbitrary phase contrast, Int. J. Numer. Methods Engrg., Volume 52 (2001), pp. 139-160
[10] Effective properties of elastic periodic composite media with fibers, J. Mech. Phys. Solids, Volume 55 (2007), pp. 881-899
[11] Imperfect soft and stiff interfaces in two-dimensional elasticity, Mech. Mater., Volume 33 (2001) no. 6, pp. 309-323
[12] Equations and surface phenomena for the flow in a porous medium, J. Mécanique, Volume 14 (1975) no. 1, pp. 73-108
[13] Study of macroscopic behavior of a deformable porous medium, J. Mécanique, Volume 16 (1977) no. 4, pp. 575-603
[14] Fluid flow through an array of fixed particles, Int. J. Eng. Sci., Volume 21 (1983) no. 1, pp. 11-23
[15] Nonhomogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127, Springer, Berlin, 1980
[16] Homogenization of the Navier–Stokes equations with a slip boundary condition, Commun. Pure Appl. Math., Volume 44 (1991), pp. 605-641
[17] Homogenization of the Stokes problem with non-homogeneous slip boundary condition, Math. Methods Appl. Sci., Volume 19 (1996), pp. 857-881
- Accelerated computational micromechanics for solute transport in porous media, Computer Methods in Applied Mechanics and Engineering, Volume 426 (2024), p. 116976 | DOI:10.1016/j.cma.2024.116976
- Numerical homogenization with FFT method for elastic composites with spring-type interfaces, Composite Structures, Volume 305 (2023), p. 116426 | DOI:10.1016/j.compstruct.2022.116426
- Numerical estimation of the permeability of granular soils using the DEM and LBM or FFT-based fluid computation method, Granular Matter, Volume 25 (2023) no. 3 | DOI:10.1007/s10035-023-01330-1
- EQUIVARIANT GEOMETRIC LEARNING FOR DIGITAL ROCK PHYSICS: ESTIMATING FORMATION FACTOR AND EFFECTIVE PERMEABILITY TENSORS FROM MORSE GRAPH, International Journal for Multiscale Computational Engineering, Volume 21 (2023) no. 5, p. 1 | DOI:10.1615/intjmultcompeng.2022042266
- Accelerating fluid flow simulations through doubly porous media using a FEM-assisted machine learning approach, Results in Physics, Volume 54 (2023), p. 107036 | DOI:10.1016/j.rinp.2023.107036
- An FFT‐based Galerkin method for the effective permeability of porous material, International Journal for Numerical Methods in Engineering, Volume 123 (2022) no. 20, p. 4893 | DOI:10.1002/nme.7065
- A Perspective on Darcy’s Law across the Scales: From Physical Foundations to Particulate Mechanics, Journal of Engineering Mechanics, Volume 148 (2022) no. 11 | DOI:10.1061/(asce)em.1943-7889.0002153
- Numerical investigation of macroscopic permeability of biporous solids with elliptic vugs, Theoretical and Computational Fluid Dynamics, Volume 36 (2022) no. 4, p. 689 | DOI:10.1007/s00162-022-00614-1
- Determination of the Effective Permeability of Doubly Porous Materials by a Two-Scale Homogenization Approach, Transport in Porous Media, Volume 145 (2022) no. 1, p. 197 | DOI:10.1007/s11242-022-01846-9
- A review of nonlinear FFT-based computational homogenization methods, Acta Mechanica, Volume 232 (2021) no. 6, p. 2051 | DOI:10.1007/s00707-021-02962-1
- A computational investigation of the effective viscosity of short-fiber reinforced thermoplastics by an FFT-based method, European Journal of Mechanics - B/Fluids, Volume 90 (2021), p. 99 | DOI:10.1016/j.euromechflu.2021.08.004
- Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size, Computer Methods in Applied Mechanics and Engineering, Volume 369 (2020), p. 113237 | DOI:10.1016/j.cma.2020.113237
- Computation of macroscopic permeability of doubly porous media with FFT based numerical homogenization method, European Journal of Mechanics - B/Fluids, Volume 83 (2020), p. 141 | DOI:10.1016/j.euromechflu.2020.04.012
- Longitudinal and transverse flows in fiber tows: Evaluation of theoretical permeability models through numerical predictions and experimental measurements, Composites Part A: Applied Science and Manufacturing, Volume 119 (2019), p. 73 | DOI:10.1016/j.compositesa.2018.12.032
- Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity, Journal of The Royal Society Interface, Volume 16 (2019) no. 151, p. 20180911 | DOI:10.1098/rsif.2018.0911
- Two reduction methods for stochastic FEM based homogenization using global basis functions, Computer Methods in Applied Mechanics and Engineering, Volume 332 (2018), p. 488 | DOI:10.1016/j.cma.2018.01.002
- Influences of micro-pores and meso-pores on elastic and plastic properties of porous materials, European Journal of Mechanics - A/Solids, Volume 72 (2018), p. 407 | DOI:10.1016/j.euromechsol.2018.06.003
- FFT based iterative schemes for composites conductors with non-overlapping fibers and Kapitza interface resistance, International Journal of Solids and Structures, Volume 135 (2018), p. 14 | DOI:10.1016/j.ijsolstr.2017.10.015
- An FFT method for the computation of thermal diffusivity of porous periodic media, Acta Mechanica, Volume 228 (2017) no. 9, p. 3019 | DOI:10.1007/s00707-017-1885-5
- Computation of permeability with Fast Fourier Transform from 3-D digital images of porous microstructures, International Journal of Numerical Methods for Heat Fluid Flow, Volume 26 (2016) no. 5, p. 1328 | DOI:10.1108/hff-12-2014-0369
- The Permeability of Boolean Sets of Cylinders, Oil Gas Science and Technology – Revue d’IFP Energies nouvelles, Volume 71 (2016) no. 4, p. 52 | DOI:10.2516/ogst/2016003
- Experimental Measurements and Multi-Scale Modeling of the Relative Gas Permeability of a Caprock, Oil Gas Science and Technology – Revue d’IFP Energies nouvelles, Volume 71 (2016) no. 4, p. 55 | DOI:10.2516/ogst/2016007
- On the Inertia Effects on the Darcy Law: Numerical Implementation and Confrontation of Micromechanics-Based Approaches, Transport in Porous Media, Volume 111 (2016) no. 1, p. 171 | DOI:10.1007/s11242-015-0588-4
- Combining FFT methods and standard variational principles to compute bounds and estimates for the properties of elastic composites, Computer Methods in Applied Mechanics and Engineering, Volume 283 (2015), p. 454 | DOI:10.1016/j.cma.2014.10.005
- Convergence of FFT‐based homogenization for strongly heterogeneous media, Mathematical Methods in the Applied Sciences, Volume 38 (2015) no. 13, p. 2761 | DOI:10.1002/mma.3259
- Designing and modeling doubly porous polymeric materials, The European Physical Journal Special Topics, Volume 224 (2015) no. 9, p. 1689 | DOI:10.1140/epjst/e2015-02491-x
- Stokes Flow Through a Boolean Model of Spheres: Representative Volume Element, Transport in Porous Media, Volume 109 (2015) no. 3, p. 711 | DOI:10.1007/s11242-015-0545-2
- Permeability determination of porous media using large‐scale finite elements and iterative solver, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 38 (2014) no. 10, p. 991 | DOI:10.1002/nag.2245
- FFT‐based bounds on the permeability of complex microstructures, International Journal for Numerical and Analytical Methods in Geomechanics, Volume 38 (2014) no. 16, p. 1707 | DOI:10.1002/nag.2278
- Numerical homogenization of nonlinear composites with a polarization-based FFT iterative scheme, Computational Materials Science, Volume 79 (2013), p. 276 | DOI:10.1016/j.commatsci.2013.04.035
- A Fourier based numerical method for computing the dynamic permeability of periodic porous media, European Journal of Mechanics - B/Fluids, Volume 37 (2013), p. 90 | DOI:10.1016/j.euromechflu.2012.07.004
- , Poromechanics V (2013), p. 1245 | DOI:10.1061/9780784412992.149
- A fast method for solving microstructural problems defined by digital images: a space Lippmann–Schwinger scheme, International Journal for Numerical Methods in Engineering, Volume 92 (2012) no. 2, p. 178 | DOI:10.1002/nme.4334
Cité par 33 documents. Sources : Crossref
Commentaires - Politique