Comptes Rendus
Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow
[Simulations eulériennes et lagrangiennes aux grandes échelles d'un écoulement diphasique évaporant]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 458-468.

Les simulations aux grandes échelles (SGE) de l'écoulement diphasique évaporant dans un brûleur expérimental sont réalisées avec deux codes numériques différents, CDP du CTR-Stanford et AVBP du CERFACS, sur le même maillage et pour les mêmes points de fonctionnement. Les résultats obtenus sont validés par comparaison avec des données expérimentales. Le code CDP peut être couplé à une méthode de suivi Lagrangien de la phase liquide (EL). Le code AVBP peut soit être couplé à une méthode mésoscopique Eulérienne (EE), soit à une méthode de suivi Lagrangien (EL). Après validation de l'écoulement purement gazeux dans le brûleur, la dynamique de la phase liquide, la dispersion et l'évaporation du carburant sont évaluées qualitativement et quantitativement pour trois simulations diphasiques dénotées respectivement : CDP-EL, AVBP-EE et AVBP-EL. Les résultats obtenus par les trois simulations sont en accord raisonable avec l'expérience pour l'écoulement diphasique.

Large-Eddy Simulations (LES) of an evaporating two-phase flow in an experimental burner are performed using two different solvers, CDP from CTR-Stanford and AVBP from CERFACS, on the same grid and for the same operating conditions. Results are evaluated by comparison with experimental data. The CDP code uses a Lagrangian particle tracking method (EL) while the code AVBP can be coupled either with a mesoscopic Eulerian approach (EE) or with a Lagrangian method (EL). After a validation of the purely gaseous flow in the burner, liquid-phase dynamics, droplet dispersion and fuel evaporation are qualitatively and quantitatively evaluated for three two-phase flow simulations. They are respectively referred as: CDP-EL, AVBP-EE and AVBP-EL. The results of the three simulations show reasonable agreement with experiments for the two-phase flow case.

Publié le :
DOI : 10.1016/j.crme.2009.06.002
Keywords: Combustion, Two-phase flows, Eulerian, Lagrangian, Large-Eddy Simulation
Mot clés : Combustion, Écoulements diphasiques, Eulérien, Lagrangien, Simulation aux grandes échelles
J.M. Senoner 1 ; M. Sanjosé 1 ; T. Lederlin 2 ; F. Jaegle 1 ; M. García 1 ; E. Riber 1 ; B. Cuenot 1 ; L. Gicquel 1 ; H. Pitsch 2 ; T. Poinsot 3

1 Cerfacs, 42, avenue Gaspard-Coriolis, 31057 Toulouse cedex 01, France
2 Center for Turbulence Research, 488 Escondido Mall, Stanford, CA 94305-3035, USA
3 Institut de mécanique des fluides de Toulouse (CNRS-INPT-UPS), allée du Professeur-Camille-Soula, 31400 Toulouse, France
@article{CRMECA_2009__337_6-7_458_0,
     author = {J.M. Senoner and M. Sanjos\'e and T. Lederlin and F. Jaegle and M. Garc{\'\i}a and E. Riber and B. Cuenot and L. Gicquel and H. Pitsch and T. Poinsot},
     title = {Eulerian and {Lagrangian} {Large-Eddy} {Simulations} of an evaporating two-phase flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {458--468},
     publisher = {Elsevier},
     volume = {337},
     number = {6-7},
     year = {2009},
     doi = {10.1016/j.crme.2009.06.002},
     language = {en},
}
TY  - JOUR
AU  - J.M. Senoner
AU  - M. Sanjosé
AU  - T. Lederlin
AU  - F. Jaegle
AU  - M. García
AU  - E. Riber
AU  - B. Cuenot
AU  - L. Gicquel
AU  - H. Pitsch
AU  - T. Poinsot
TI  - Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 458
EP  - 468
VL  - 337
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crme.2009.06.002
LA  - en
ID  - CRMECA_2009__337_6-7_458_0
ER  - 
%0 Journal Article
%A J.M. Senoner
%A M. Sanjosé
%A T. Lederlin
%A F. Jaegle
%A M. García
%A E. Riber
%A B. Cuenot
%A L. Gicquel
%A H. Pitsch
%A T. Poinsot
%T Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow
%J Comptes Rendus. Mécanique
%D 2009
%P 458-468
%V 337
%N 6-7
%I Elsevier
%R 10.1016/j.crme.2009.06.002
%G en
%F CRMECA_2009__337_6-7_458_0
J.M. Senoner; M. Sanjosé; T. Lederlin; F. Jaegle; M. García; E. Riber; B. Cuenot; L. Gicquel; H. Pitsch; T. Poinsot. Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 458-468. doi : 10.1016/j.crme.2009.06.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.002/

[1] H. El-Asrag; S. Menon Large eddy simulation of bluff-body stabilized swirling non-premixed flames, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 1747-1754

[2] C. Duwig; C. Fureby Large eddy simulation of unsteady lean stratified premixed combustion, Combustion and Flame, Volume 151 (2007) no. 1–2, pp. 85-103

[3] K. Mahesh; G. Constantinescu; S. Apte; G. Iaccarino; F. Ham; P. Moin Large eddy simulation of reacting turbulent flows in complex geometries, ASME Journal of the Applied Mechanics, Volume 73 (2006), pp. 374-381

[4] N. Patel; S. Menon Simulation of spray–turbulence–flame interactions in a lean direct injection combustor, Combustion and Flame, Volume 153 (2008) no. 1–2, pp. 228-257

[5] P. Février; O. Simonin; K. Squires Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: Theoretical formalism and numerical study, Journal of Fluid Mechanics, Volume 533 (2005), pp. 1-46

[6] M. Boileau; S. Pascaud; E. Riber; B. Cuenot; L.Y.M. Gicquel; T. Poinsot; M. Cazalens Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in gas turbines, Flow, Turbulence and Combustion, Volume 80 (2008) no. 3, pp. 291-321

[7] J. Kim; P. Moin Application of a fractional-step method to incompressible Navier–Stokes equations, Journal of Computational Physics, Volume 59 (1985) no. 2, pp. 308-323

[8] K. Mahesh; G. Constantinescu; P. Moin A numerical method for large-eddy simulation in complex geometries, Journal of Computational Physics, Volume 197 (2004) no. 1, pp. 215-240

[9] M. Germano; U. Piomelli; P. Moin; W. Cabot A dynamic subgrid-scale eddy viscosity model, Physics of Fluids, Volume 3 (1991) no. 7, pp. 1760-1765

[10] O. Colin; M. Rudgyard Development of high-order Taylor–Galerkin schemes for unsteady calculations, Journal of Computational Physics, Volume 162 (2000) no. 2, pp. 338-371

[11] F. Nicoud; F. Ducros Subgrid-scale stress modelling based on the square of the velocity gradient, Flow, Turbulence and Combustion, Volume 62 (1999) no. 3, pp. 183-200

[12] V. Moureau; G. Lartigue; Y. Sommerer; C. Angelberger; O. Colin; T. Poinsot High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, Volume 202 (2005) no. 2, pp. 710-736

[13] L. Schiller; A. Nauman A drag coefficient correlation, VDI Zeitung, Volume 77 (1935), pp. 318-320

[14] S.V. Apte; K.P. Mahesh; P. Moin; J.C. Oefelein Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor, International Journal of Multiphase Flow, Volume 29 (2003), pp. 1311-1331

[15] E. Riber; V. Moureau; M. García; T. Poinsot; O. Simonin Evaluation of numerical strategies for LES of particulate two-phase recirculating flows, Journal of Computational Physics, Volume 228 (2009), pp. 539-564

[16] M. Moreau, Modélisation numérique directe et des grandes échelles des écoulements turbulents gaz-particules dans le formalisme eulérien mésoscopique, Ph.D. thesis, INP Toulouse, 2006

[17] W.E. Ranz; W.R. Marshall Evaporation from drops, Chemical Engineering Progress, Volume 48 (1952) no. 4, p. 173

[18] G.M. Faeth Evaporation and combustion of sprays, Progress in Energy and Combustion Science, Volume 9 (1983), pp. 1-76

[19] K.K. Kuo Principles of Combustion, John Wiley, New York, 1986

[20] G.L. Hubbard; V.E. Denny; A.F. Mills Droplet evaporation: Effects of transient and variable properties, International Journal of Heat and Mass Transfer, Volume 18 (1975), pp. 1003-1008

[21] J. Luche, Elaboration of reduced kinetic models of combustion. Application to a kerosene mechanism, Ph.D. thesis, LCSR Orleans, 2003

[22] N.K. Rizk; A.H. Lefebvre Internal flow characteristics of simplex atomizer, Journal of Propulsion and Power, Volume 1 ( May–June 1985 ) no. 3, pp. 193-199

[23] G.E. Cossali An integral model for gas entrainment into full cone sprays, Journal of Fluid Mechanics, Volume 439 (2001), pp. 353-366

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

High performance parallel computing of flows in complex geometries

Laurent Y.M. Gicquel; N. Gourdain; J.-F. Boussuge; ...

C. R. Méca (2011)


Comparison of numerical methods and combustion models for LES of a ramjet

A. Roux; S. Reichstadt; N. Bertier; ...

C. R. Méca (2009)


Compressible and low Mach number LES of a swirl experimental burner

David Barré; Matthias Kraushaar; Gabriel Staffelbach; ...

C. R. Méca (2013)