[Simulations eulériennes et lagrangiennes aux grandes échelles d'un écoulement diphasique évaporant]
Les simulations aux grandes échelles (SGE) de l'écoulement diphasique évaporant dans un brûleur expérimental sont réalisées avec deux codes numériques différents, CDP du CTR-Stanford et AVBP du CERFACS, sur le même maillage et pour les mêmes points de fonctionnement. Les résultats obtenus sont validés par comparaison avec des données expérimentales. Le code CDP peut être couplé à une méthode de suivi Lagrangien de la phase liquide (EL). Le code AVBP peut soit être couplé à une méthode mésoscopique Eulérienne (EE), soit à une méthode de suivi Lagrangien (EL). Après validation de l'écoulement purement gazeux dans le brûleur, la dynamique de la phase liquide, la dispersion et l'évaporation du carburant sont évaluées qualitativement et quantitativement pour trois simulations diphasiques dénotées respectivement : CDP-EL, AVBP-EE et AVBP-EL. Les résultats obtenus par les trois simulations sont en accord raisonable avec l'expérience pour l'écoulement diphasique.
Large-Eddy Simulations (LES) of an evaporating two-phase flow in an experimental burner are performed using two different solvers, CDP from CTR-Stanford and AVBP from CERFACS, on the same grid and for the same operating conditions. Results are evaluated by comparison with experimental data. The CDP code uses a Lagrangian particle tracking method (EL) while the code AVBP can be coupled either with a mesoscopic Eulerian approach (EE) or with a Lagrangian method (EL). After a validation of the purely gaseous flow in the burner, liquid-phase dynamics, droplet dispersion and fuel evaporation are qualitatively and quantitatively evaluated for three two-phase flow simulations. They are respectively referred as: CDP-EL, AVBP-EE and AVBP-EL. The results of the three simulations show reasonable agreement with experiments for the two-phase flow case.
Mot clés : Combustion, Écoulements diphasiques, Eulérien, Lagrangien, Simulation aux grandes échelles
J.M. Senoner 1 ; M. Sanjosé 1 ; T. Lederlin 2 ; F. Jaegle 1 ; M. García 1 ; E. Riber 1 ; B. Cuenot 1 ; L. Gicquel 1 ; H. Pitsch 2 ; T. Poinsot 3
@article{CRMECA_2009__337_6-7_458_0, author = {J.M. Senoner and M. Sanjos\'e and T. Lederlin and F. Jaegle and M. Garc{\'\i}a and E. Riber and B. Cuenot and L. Gicquel and H. Pitsch and T. Poinsot}, title = {Eulerian and {Lagrangian} {Large-Eddy} {Simulations} of an evaporating two-phase flow}, journal = {Comptes Rendus. M\'ecanique}, pages = {458--468}, publisher = {Elsevier}, volume = {337}, number = {6-7}, year = {2009}, doi = {10.1016/j.crme.2009.06.002}, language = {en}, }
TY - JOUR AU - J.M. Senoner AU - M. Sanjosé AU - T. Lederlin AU - F. Jaegle AU - M. García AU - E. Riber AU - B. Cuenot AU - L. Gicquel AU - H. Pitsch AU - T. Poinsot TI - Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow JO - Comptes Rendus. Mécanique PY - 2009 SP - 458 EP - 468 VL - 337 IS - 6-7 PB - Elsevier DO - 10.1016/j.crme.2009.06.002 LA - en ID - CRMECA_2009__337_6-7_458_0 ER -
%0 Journal Article %A J.M. Senoner %A M. Sanjosé %A T. Lederlin %A F. Jaegle %A M. García %A E. Riber %A B. Cuenot %A L. Gicquel %A H. Pitsch %A T. Poinsot %T Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow %J Comptes Rendus. Mécanique %D 2009 %P 458-468 %V 337 %N 6-7 %I Elsevier %R 10.1016/j.crme.2009.06.002 %G en %F CRMECA_2009__337_6-7_458_0
J.M. Senoner; M. Sanjosé; T. Lederlin; F. Jaegle; M. García; E. Riber; B. Cuenot; L. Gicquel; H. Pitsch; T. Poinsot. Eulerian and Lagrangian Large-Eddy Simulations of an evaporating two-phase flow. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 458-468. doi : 10.1016/j.crme.2009.06.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.002/
[1] Large eddy simulation of bluff-body stabilized swirling non-premixed flames, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 1747-1754
[2] Large eddy simulation of unsteady lean stratified premixed combustion, Combustion and Flame, Volume 151 (2007) no. 1–2, pp. 85-103
[3] Large eddy simulation of reacting turbulent flows in complex geometries, ASME Journal of the Applied Mechanics, Volume 73 (2006), pp. 374-381
[4] Simulation of spray–turbulence–flame interactions in a lean direct injection combustor, Combustion and Flame, Volume 153 (2008) no. 1–2, pp. 228-257
[5] Partitioning of particle velocities in gas–solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: Theoretical formalism and numerical study, Journal of Fluid Mechanics, Volume 533 (2005), pp. 1-46
[6] Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in gas turbines, Flow, Turbulence and Combustion, Volume 80 (2008) no. 3, pp. 291-321
[7] Application of a fractional-step method to incompressible Navier–Stokes equations, Journal of Computational Physics, Volume 59 (1985) no. 2, pp. 308-323
[8] A numerical method for large-eddy simulation in complex geometries, Journal of Computational Physics, Volume 197 (2004) no. 1, pp. 215-240
[9] A dynamic subgrid-scale eddy viscosity model, Physics of Fluids, Volume 3 (1991) no. 7, pp. 1760-1765
[10] Development of high-order Taylor–Galerkin schemes for unsteady calculations, Journal of Computational Physics, Volume 162 (2000) no. 2, pp. 338-371
[11] Subgrid-scale stress modelling based on the square of the velocity gradient, Flow, Turbulence and Combustion, Volume 62 (1999) no. 3, pp. 183-200
[12] High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, Volume 202 (2005) no. 2, pp. 710-736
[13] A drag coefficient correlation, VDI Zeitung, Volume 77 (1935), pp. 318-320
[14] Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor, International Journal of Multiphase Flow, Volume 29 (2003), pp. 1311-1331
[15] Evaluation of numerical strategies for LES of particulate two-phase recirculating flows, Journal of Computational Physics, Volume 228 (2009), pp. 539-564
[16] M. Moreau, Modélisation numérique directe et des grandes échelles des écoulements turbulents gaz-particules dans le formalisme eulérien mésoscopique, Ph.D. thesis, INP Toulouse, 2006
[17] Evaporation from drops, Chemical Engineering Progress, Volume 48 (1952) no. 4, p. 173
[18] Evaporation and combustion of sprays, Progress in Energy and Combustion Science, Volume 9 (1983), pp. 1-76
[19] Principles of Combustion, John Wiley, New York, 1986
[20] Droplet evaporation: Effects of transient and variable properties, International Journal of Heat and Mass Transfer, Volume 18 (1975), pp. 1003-1008
[21] J. Luche, Elaboration of reduced kinetic models of combustion. Application to a kerosene mechanism, Ph.D. thesis, LCSR Orleans, 2003
[22] Internal flow characteristics of simplex atomizer, Journal of Propulsion and Power, Volume 1 ( May–June 1985 ) no. 3, pp. 193-199
[23] An integral model for gas entrainment into full cone sprays, Journal of Fluid Mechanics, Volume 439 (2001), pp. 353-366
Cité par Sources :
Commentaires - Politique