Comptes Rendus
Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines
[SGE massivement parallèle des instabilités thermo-acoustiques azimutales dans les turbines à gaz annulaires]
Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 385-394.

La conception des turbines à gaz aéronautiques est aujourd'hui de plus en plus délicate avec souvent l'apparition d'instabilités de combustion. Pour prédire ces instabilités, qui prennent fréquemment la forme de modes azimutaux dans les chambres annulaires, il est nécessaire de simuler l'intégralité de la chambre, ce qui restait hors de portée jusqu'à très récemment et l'apparition des calculateurs massivement parallèles. Cet article présente les Simulations aux Grandes Echelles (SGE) de deux chambres d'hélicoptère complètes qui ne diffèrent que sur certains détails géométriques des tourbillonneurs. Dans les deux cas, la SGE capture l'apparition et l'établissement de modes azimutaux tournants. Néanmoins, les deux cas présentent des réponses thermo-acoustiques différentes et les cycles limites correspondants diffèrent. Pour l'un des cas, une forte instabilité se développe et entraîne une pulsation des flammes tandis que l'autre cas montre des flammes qui restent bien ancrées et nettement moins affectées par le mode. Cette étude souligne donc la capacité de la SGE à discriminer des systèmes d'injection.

Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines, which are unfortunately more and more prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. In this article, full annular Large Eddy Simulations (LES) of two helicopter combustors, which differ only on the swirlers' design, are performed. In both computations, LES captures self-established rotating azimuthal modes. However, the two cases exhibit different thermo-acoustic responses and the resulting limit-cycles are different. With the first design, a self-excited strong instability develops, leading to pulsating flames and local flashback. In the second case, the flames are much less affected by the azimuthal mode and remain stable, allowing an acceptable operation. Hence, this study highlights the potential of LES for discriminating injection system designs.

Publié le :
DOI : 10.1016/j.crme.2009.06.003
Keywords: Fluid dynamics, Combustion instabilities, Annular gas turbines, Azimuthal modes, LES
Mot clés : Mécanique des fluides, Instabilités de combustion, Turbines à gaz annulaires, Modes azimutaux, SGE
P. Wolf 1 ; G. Staffelbach 1 ; A. Roux 1 ; L. Gicquel 1 ; T. Poinsot 2 ; V. Moureau 3

1 CERFACS, 42, avenue G. Coriolis, 31057 Toulouse cedex 1, France
2 IMFT – CNRS, Toulouse, France
3 Turbomeca (SAFRAN group), Bordes, France
@article{CRMECA_2009__337_6-7_385_0,
     author = {P. Wolf and G. Staffelbach and A. Roux and L. Gicquel and T. Poinsot and V. Moureau},
     title = {Massively parallel {LES} of azimuthal thermo-acoustic instabilities in annular gas turbines},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {385--394},
     publisher = {Elsevier},
     volume = {337},
     number = {6-7},
     year = {2009},
     doi = {10.1016/j.crme.2009.06.003},
     language = {en},
}
TY  - JOUR
AU  - P. Wolf
AU  - G. Staffelbach
AU  - A. Roux
AU  - L. Gicquel
AU  - T. Poinsot
AU  - V. Moureau
TI  - Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 385
EP  - 394
VL  - 337
IS  - 6-7
PB  - Elsevier
DO  - 10.1016/j.crme.2009.06.003
LA  - en
ID  - CRMECA_2009__337_6-7_385_0
ER  - 
%0 Journal Article
%A P. Wolf
%A G. Staffelbach
%A A. Roux
%A L. Gicquel
%A T. Poinsot
%A V. Moureau
%T Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines
%J Comptes Rendus. Mécanique
%D 2009
%P 385-394
%V 337
%N 6-7
%I Elsevier
%R 10.1016/j.crme.2009.06.003
%G en
%F CRMECA_2009__337_6-7_385_0
P. Wolf; G. Staffelbach; A. Roux; L. Gicquel; T. Poinsot; V. Moureau. Massively parallel LES of azimuthal thermo-acoustic instabilities in annular gas turbines. Comptes Rendus. Mécanique, Volume 337 (2009) no. 6-7, pp. 385-394. doi : 10.1016/j.crme.2009.06.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.06.003/

[1] C.O. Paschereit, B. Schuermans, P. Monkewitz, Non-linear combustion instabilities in annular gas-turbine combustors, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006

[2] S. Candel, Combustion instabilities coupled by pressure waves and their active control, in: 24th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1992, pp. 1277–1296

[3] D.G. Crighton; A.P. Dowling; J.E. Ffowcs Williams; M. Heckl; F. Leppington Modern Methods in Analytical Acoustics, Lecture Notes, Springer-Verlag, New York, 1992

[4] T. Poinsot; D. Veynante Theoretical and Numerical Combustion, R.T. Edwards, 2005

[5] T. Lieuwen, V. Yang, Combustion instabilities in gas turbine engines. Operational experience, fundamental mechanisms and modeling, in: Progress in Astronautics and Aeronautics, vol. 210, AIAA, 2005

[6] U. Krueger, J. Hueren, S. Hoffmann, W. Krebs, P. Flohr, D. Bohn, Prediction and measurement of thermoacoustic improvements in gas turbines with annular combustion systems, in: ASME Paper, ASME TURBO EXPO, Munich, Germany, 2000

[7] S.R. Stow, A.P. Dowling, Thermoacoustic oscillations in an annular combustor, in: ASME Paper, New Orleans, Louisiana, 2001

[8] F. Nicoud, L. Benoit, Global tools for thermo-acoustic instabilities in gas turbines, in: APS/DFD Meeting, Bull. Amer. Phys. Soc., vol. 48, New York, 2003

[9] F. Nicoud; L. Benoit; C. Sensiau; T. Poinsot Acoustic modes in combustors with complex impedances and multidimensional active flames, AIAA Journal, Volume 45 (2007) no. 2, pp. 426-441

[10] G. Staffelbach; L.Y.M. Gicquel; G. Boudier; T. Poinsot Large Eddy Simulation of self excited azimuthal modes in annular combustors, Proceedings of the Combustion Institute, Volume 32 (2009) no. 2, pp. 2909-2916

[11] F. Di Mare; W.P. Jones; K. Menzies Large eddy simulation of a model gas turbine combustor, Combustion and Flame, Volume 137 (2004), pp. 278-295

[12] H. Pitsch Large eddy simulation of turbulent combustion, Annual Review of Fluid Mechanics, Volume 38 (2006), pp. 453-482

[13] A. Sengissen; J.F. Van Kampen; R. Huls; G. Stoffels; J.B.W. Kok; T. Poinsot Les and experimental studies of cold and reacting flows in a swirled partially premixed burner with and without fuel modulation, Combustion and Flame, Volume 150 (2007), pp. 40-53

[14] L.Y.M. Gicquel, Y. Sommerer, B. Cuenot, T. Poinsot, LES and acoustic analysis of turbulent reacting flows: Application to a 3D oscillatory ramjet combustor, in: ASME 2006, Paper AIAA-2006-151, Reno, USA, 2006

[15] P. Schmitt; T.J. Poinsot; B. Schuermans; K. Geigle Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high pressure burner, Journal of Fluid Mechanics, Volume 570 (2007), pp. 17-46

[16] G. Boudier; L.Y.M. Gicquel; T. Poinsot; D. Bissières; C. Bérat Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber, Proceedings of the Combustion Institute, Volume 31 (2007), pp. 3075-3082

[17] S. Roux; G. Lartigue; T. Poinsot; U. Meier; C. Bérat Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations, Combustion and Flame, Volume 141 (2005), pp. 40-54

[18] G. Boudier; L.Y.M. Gicquel; T. Poinsot Effect of mesh resolution on large eddy simulation of reacting flows in complex geometry combustors, Combustion and Flame, Volume 155 (2008), pp. 196-214

[19] O. Colin; M. Rudgyard Development of high-order Taylor–Galerkin schemes for unsteady calculations, Journal of Computational Physics, Volume 162 (2000) no. 2, pp. 338-371

[20] J. Smagorinsky General circulation experiments with the primitive equations: 1. The basic experiment, Monthly Weather Review, Volume 91 (1963), pp. 99-164

[21] T. Poinsot; S. Lele Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, Volume 101 (1992) no. 1, pp. 104-129

[22] V. Moureau; G. Lartigue; Y. Sommerer; C. Angelberger; O. Colin; T. Poinsot Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, Volume 202 (2004) no. 2, pp. 710-736

[23] J.-Ph. Légier, Simulations numériques des instabilités de combustion dans les foyers aéronautiques, Ph.D. thesis, INP Toulouse, 2001

[24] O. Colin; F. Ducros; D. Veynante; T. Poinsot A thickened flame model for large eddy simulations of turbulent premixed combustion, Physics of Fluids, Volume 12 (2000) no. 7, pp. 1843-1863

[25] J.-Ph. Légier, T. Poinsot, D. Veynante, Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion, in: Proceedings of the Summer Program, Center for Turbulence Research, NASA Ames/Stanford Univ., 2000, pp. 157–168

[26] S. Mendez; F. Nicoud An adiabatic homogeneous model for the flow around a multi-perforated plate, AIAA Journal, Volume 46 (2008) no. 10, pp. 2623-2633

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Progress and challenges in swirling flame dynamics

Sébastien Candel; Daniel Durox; Thierry Schuller; ...

C. R. Méca (2012)


High performance parallel computing of flows in complex geometries

Laurent Y.M. Gicquel; N. Gourdain; J.-F. Boussuge; ...

C. R. Méca (2011)


Effect of multiperforated plates on the acoustic modes in combustors

Elsa Gullaud; Simon Mendez; Claude Sensiau; ...

C. R. Méca (2009)