Comptes Rendus
Multiarray signal processing: Tensor decomposition meets compressed sensing
[Traitement du signal multi-antenne : Les décompositions tensorielles rejoignent l'échantillonnage compressé]
Comptes Rendus. Mécanique, Volume 338 (2010) no. 6, pp. 311-320.

Nous décrivons comment les techniques et outils d'échantillonnage compressé récemment découverts peuvent être utilisés dans les décompositions tensorielles, avec pour illustration une modélisation des signaux provenant de plusieurs antennes multicapteurs. Nous montrons qu'en posant des bornes appropriées sur une certaine mesure de séparation entre les sources rayonnantes (appelée cohérence dans le jargon de l'échantillonnage compressé), on pouvait toujours garantir l'existence et l'unicité d'une meilleure approximation de rang r du tenseur représentant le signal. Nous en déduisons aussi une variante calculable de la condition d'unicité de Kruskal, où cette cohérence apparaît comme une mesure du k-rang. Les problèmes de récupération parcimonieuse avec un dictionnaire infini continu, de représentation tensorielle de plus bas rang, et de séparation aveugle de sources sont ainsi abordés d'une seule et même façon. La décomposition du tenseur de mesures conduit à la localisation et à l'extraction simultanées des sources rayonnantes, de manière entièrement déterministe.

We discuss how recently discovered techniques and tools from compressed sensing can be used in tensor decompositions, with a view towards modeling signals from multiple arrays of multiple sensors. We show that with appropriate bounds on a measure of separation between radiating sources called coherence, one could always guarantee the existence and uniqueness of a best rank-r approximation of the tensor representing the signal. We also deduce a computationally feasible variant of Kruskal's uniqueness condition, where the coherence appears as a proxy for k-rank. Problems of sparsest recovery with an infinite continuous dictionary, lowest-rank tensor representation, and blind source separation are treated in a uniform fashion. The decomposition of the measurement tensor leads to simultaneous localization and extraction of radiating sources, in an entirely deterministic manner.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2010.06.005
Keywords: Signal processing, Blind source separation, Blind channel identification, Tensors, Tensor rank, Polyadic tensor decompositions, Best rank-r approximations, Sparse representations, Spark, k-rank, Coherence, Multiarrays, Multisensors
Mots-clés : Traitement de signal, Séparation aveugle de sources, Identification aveugle de canal, Tenseurs, Rang tensoriel, Décompositions tensorielles polyadiques, Meilleure approximation de rang r, Représentations parcimonieuses, Spark, k-rang, Cohérence, Antennes multiples, Multicapteurs

Lek-Heng Lim 1 ; Pierre Comon 2

1 Department of Mathematics, University of California, Berkeley, CA 94720-3840, United States
2 Laboratoire I3S, CNRS UMR6070, University of Nice, 06903, Sophia-Antipolis, France
@article{CRMECA_2010__338_6_311_0,
     author = {Lek-Heng Lim and Pierre Comon},
     title = {Multiarray signal processing: {Tensor} decomposition meets compressed sensing},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {311--320},
     publisher = {Elsevier},
     volume = {338},
     number = {6},
     year = {2010},
     doi = {10.1016/j.crme.2010.06.005},
     language = {en},
}
TY  - JOUR
AU  - Lek-Heng Lim
AU  - Pierre Comon
TI  - Multiarray signal processing: Tensor decomposition meets compressed sensing
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 311
EP  - 320
VL  - 338
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2010.06.005
LA  - en
ID  - CRMECA_2010__338_6_311_0
ER  - 
%0 Journal Article
%A Lek-Heng Lim
%A Pierre Comon
%T Multiarray signal processing: Tensor decomposition meets compressed sensing
%J Comptes Rendus. Mécanique
%D 2010
%P 311-320
%V 338
%N 6
%I Elsevier
%R 10.1016/j.crme.2010.06.005
%G en
%F CRMECA_2010__338_6_311_0
Lek-Heng Lim; Pierre Comon. Multiarray signal processing: Tensor decomposition meets compressed sensing. Comptes Rendus. Mécanique, Volume 338 (2010) no. 6, pp. 311-320. doi : 10.1016/j.crme.2010.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.06.005/

[1] E.J. Candès Compressive sampling, Int. Congress Math., Volume III (2006), pp. 1433-1452

[2] E.J. Candès; J. Romberg Sparsity and incoherence in compressive sampling, Inverse Problems, Volume 23 (2007) no. 3, pp. 969-985

[3] A. Cohen; W. Dahmen; R. DeVore Compressed sensing and best k-term approximation, J. Amer. Math. Soc., Volume 22 (2009) no. 1, pp. 211-231

[4] D.L. Donoho Compressed sensing, IEEE Trans. Inform. Theory, Volume 52 (2006) no. 4, pp. 1289-1306

[5] D.L. Donoho; M. Elad Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization, Proc. Nat. Acad. Sci., Volume 100 (2003) no. 5, pp. 2197-2202

[6] R. Gribonval; M. Nielsen Sparse representations in unions of bases, IEEE Trans. Inform. Theory, Volume 49 (2003) no. 12, pp. 3320-3325

[7] E.J. Candès; B. Recht Exact matrix completion via convex optimization, Found. Comput. Math., Volume 9 (2009) no. 6, pp. 717-772

[8] E.J. Candès, T. Tao, The power of convex relaxation: Near-optimal matrix completion, preprint, 2009.

[9] M. Fazel; H. Hindi; S. Boyd A rank minimization heuristic with application to minimum order system approximation, Proc. Amer. Control Conf., Volume 6 (2001), pp. 4734-4739

[10] D. Gross Recovering low-rank matrices from few coefficients in any basis, 2009 (preprint) | arXiv

[11] B. Recht; M. Fazel; P. Parrilo Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, 2008 (preprint) | arXiv

[12] Z. Zhu, A.M.-C. So, Y. Ye, Fast and near-optimal matrix completion via randomized basis pursuit, preprint, 2009.

[13] J. Rhodes A concise proof of Kruskal's theorem on tensor decomposition, Linear Algebra Appl., Volume 432 (2010) no. 7, pp. 1818-1824

[14] P. Comon; G. Golub; L.-H. Lim; B. Mourrain Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl., Volume 30 (2008) no. 3, pp. 1254-1279

[15] V. De Silva; L.-H. Lim Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., Volume 30 (2008) no. 3, pp. 1084-1127

[16] J. Håstad Tensor rank is NP-complete, J. Algorithms, Volume 11 (1990) no. 4, pp. 644-654

[17] C. Hillar; L.-H. Lim Most tensor problems are NP-hard, 2009 (preprint) | arXiv

[18] P. Comon, L.-H. Lim, Sparse representations and tensor decompositions, preprint, 2010.

[19] E.J. Candès The restricted isometry property and its implications for compressed sensing, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 9–10, pp. 589-592

[20] J. Tropp Greed is good: algorithmic results for sparse approximation, IEEE Trans. Inform. Theory, Volume 50 (2004) no. 10, pp. 2231-2242

[21] P. Comon Contrasts, independent component analysis, and blind deconvolution, Int. J. Adapt. Control Signal Process., Volume 18 (2004) no. 3, pp. 225-243

[22] Handbook of Blind Source Separation: Independent Component Analysis and Applications (P. Comon; C. Jutten, eds.), Academic Press, New York, NY, 2010

[23] M. Duarte; M. Davenport; D. Takhar; J. Laska; T. Sun; K. Kelly; R. Baraniuk Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag., Volume 25 (2008) no. 2, pp. 83-91

[24] N.D. Sidiropoulos; R. Bro; G.B. Giannakis Parallel factor analysis in sensor array processing, IEEE Trans. Signal Process., Volume 48 (2000) no. 8, pp. 2377-2388

[25] R. Roy; A. Paulraj; T. Kailath ESPRIT — A subspace rotation approach to estimation of parameters of cisoids in noise, IEEE Trans. Acoust. Speech Signal Process., Volume 34 (1986) no. 5, pp. 1340-1344

[26] F.L. Hitchcock The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., Volume 6 (1927) no. 1, pp. 164-189

[27] L.-H. Lim; P. Comon Nonnegative approximations of nonnegative tensors, J. Chemometrics, Volume 23 (2009) no. 7–8, pp. 432-441

[28] M.V. Catalisano; A.V. Geramita; A. Gimigliano Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl., Volume 355 (2002) no. 1–3, pp. 263-285

[29] J.M. Landsberg; L. Manivel On the ideals of secant varieties of Segre varieties, Found. Comput. Math., Volume 4 (2004) no. 4, pp. 397-422

[30] F.L. Zak Tangents and Secants of Algebraic Varieties, AMS, Providence, RI, 1993

[31] J.-B. Hiriart-Urruty; C. Lemaréchal Convex Analysis and Minimization Algorithms, I & II, Springer-Verlag, Berlin, 1993

[32] J.G. Oxley Matroid Theory, Oxford University Press, New York, NY, 1992

[33] J.B. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Appl., Volume 18 (1977) no. 2, pp. 95-138

[34] A. Vardy The intractability of computing the minimum distance of a code, IEEE Trans. Inform. Theory, Volume 43 (1997) no. 6, pp. 1757-1766

[35] B.K. Natarajan Sparse approximate solutions to linear systems, SIAM J. Comput., Volume 24 (1995) no. 2, pp. 227-234

[36] J.M. Landsberg Kruskal's theorem, 2009 (preprint) | arXiv

[37] A. Stegeman; N.D. Sidiropoulos On Kruskal's uniqueness condition for the candecomp/parafac decomposition, Linear Algebra Appl., Volume 420 (2007) no. 2–3, pp. 540-552

[38] H. Derksen, Sharpness of Kruskal's theorem, preprint, 2009.

  • Debin Liu; Laurence T. Yang; Ruonan Zhao; Xianjun Deng; Chenlu Zhu; Yiheng Ruan Multi-Tree Compact Hierarchical Tensor Recurrent Neural Networks for Intelligent Transportation System Edge Devices, IEEE Transactions on Intelligent Transportation Systems, Volume 25 (2024) no. 8, p. 8719 | DOI:10.1109/tits.2024.3364250
  • Silpa Babu; Selin Aviyente; Namrata Vaswani, ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2023), p. 1 | DOI:10.1109/icassp49357.2023.10097054
  • Jianjun Wang; Jingyao Hou; Yonina C. Eldar Tensor Robust Principal Component Analysis From Multilevel Quantized Observations, IEEE Transactions on Information Theory, Volume 69 (2023) no. 1, p. 383 | DOI:10.1109/tit.2022.3198725
  • Ali Mehrpooya; Seyed Mohammad Karbasi; Milad Nazari; Zahra Abbasi; Mohammad Mahdi Nayebi 3D inverse synthetic aperture radar image quality improvement using sparse signal representation, IET Radar, Sonar Navigation, Volume 17 (2023) no. 3, p. 388 | DOI:10.1049/rsn2.12348
  • Hong Du; Huixian Lin Image reconstruction based on improved block compressed sensing, Computational and Applied Mathematics, Volume 41 (2022) no. 1, p. 18 (Id/No 4) | DOI:10.1007/s40314-021-01706-0 | Zbl:1499.94008
  • Hailin Wang; Feng Zhang; Jianjun Wang; Tingwen Huang; Jianwen Huang; Xinling Liu Generalized Nonconvex Approach for Low-Tubal-Rank Tensor Recovery, IEEE Transactions on Neural Networks and Learning Systems, Volume 33 (2022) no. 8, p. 3305 | DOI:10.1109/tnnls.2021.3051650
  • Hassan Bozorgmanesh; Masoud Hajarian Triangular decomposition of CP factors of a third-order tensor with application to solving nonlinear systems of equations, Journal of Scientific Computing, Volume 90 (2022) no. 2, p. 25 (Id/No 74) | DOI:10.1007/s10915-021-01758-8 | Zbl:1481.15025
  • Hao Li; Weijia Cui; Chunxiao Jian; Haiyun Xu; Fengtong Mei; Xiaofei Zhang Two-Dimensional DOA Estimation for Coprime Planar Arrays Based on Self-Correlation Tensor, Mathematical Problems in Engineering, Volume 2022 (2022), p. 1 | DOI:10.1155/2022/7999641
  • Yipeng Liu; Jiani Liu; Zhen Long; Ce Zhu Tensor Decomposition, Tensor Computation for Data Analysis (2022), p. 19 | DOI:10.1007/978-3-030-74386-4_2
  • Alessandra Bernardi; Martina Iannacito; Duccio Rocchini High order singular value decomposition for plant diversity estimation, Bollettino dell'Unione Matematica Italiana, Volume 14 (2021) no. 4, pp. 557-591 | DOI:10.1007/s40574-021-00300-w | Zbl:1505.65180
  • Awatif Rouijel; Azhar Hadmi; Hassan El Ghazi; Zakaria Mohammadi Tensor-based approach for blind separation of interleave-NOMA 5G system, Scientific African, Volume 14 (2021), p. e00956 | DOI:10.1016/j.sciaf.2021.e00956
  • Dong Xia; Ming Yuan; Cun-Hui Zhang Statistically optimal and computationally efficient low rank tensor completion from noisy entries, The Annals of Statistics, Volume 49 (2021) no. 1, pp. 76-99 | DOI:10.1214/20-aos1942 | Zbl:1473.62184
  • Morteza Ashraphijuo; Xiaodong Wang Characterization of sampling patterns for low-tt-rank tensor retrieval, Annals of Mathematics and Artificial Intelligence, Volume 88 (2020) no. 8, pp. 859-886 | DOI:10.1007/s10472-020-09691-6 | Zbl:1466.62455
  • Morteza Ashraphijuo; Xiaodong Wang Structured Alternating Minimization for Union of Nested Low-Rank Subspaces Data Completion, IEEE Journal on Selected Areas in Information Theory, Volume 1 (2020) no. 3, p. 632 | DOI:10.1109/jsait.2020.3039170
  • Yong Li; Wenrui Dai; Junni Zou; Hongkai Xiong; Yuan F. Zheng Scalable Structured Compressive Video Sampling With Hierarchical Subspace Learning, IEEE Transactions on Circuits and Systems for Video Technology, Volume 30 (2020) no. 10, p. 3528 | DOI:10.1109/tcsvt.2019.2939370
  • Min Cao; Mengxue Huang; Shangjing Ma; Guonian Lü; Min Chen Analysis of the spatiotemporal riding modes of dockless shared bicycles based on tensor decomposition, International Journal of Geographical Information Science, Volume 34 (2020) no. 11, p. 2225 | DOI:10.1080/13658816.2020.1768259
  • Morteza Ashraphijuo; Xiaodong Wang Union of low-rank tensor spaces: clustering and completion, Journal of Machine Learning Research (JMLR), Volume 21 (2020), p. 36 (Id/No 69) | Zbl:1499.62205
  • Ming Yang; Wen Li; Mingqing Xiao On identifiability of higher order block term tensor decompositions of rank Lr rank-1, Linear and Multilinear Algebra, Volume 68 (2020) no. 2, pp. 223-245 | DOI:10.1080/03081087.2018.1502251 | Zbl:1429.15023
  • Qingzhu Wang; Lijuan Zhang; Bin Li; Yihai Zhu Space-Time-Frequency Coding for MIMO Relay System Based on Tensor Decomposition, Radioelectronics and Communications Systems, Volume 63 (2020) no. 2, p. 77 | DOI:10.3103/s073527272002003x
  • Квинжу Ванг; Лиюань Жанг; Бин Ли; Йихай Жу Пространственно-временное частотное кодирование на основе тензорного разложения для релейной системы MIMO, Известия высших учебных заведений. Радиоэлектроника, Volume 63 (2020) no. 2, p. 95 | DOI:10.20535/s002134702002003x
  • Ankur Sinha; Vaseem Shaikh, 2019 IEEE Congress on Evolutionary Computation (CEC) (2019), p. 1830 | DOI:10.1109/cec.2019.8790108
  • Chunhua Deng; Miao Yin; Xiao-Yang Liu; Xiaodong Wang; Bo Yuan, 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2019), p. 1 | DOI:10.1109/iccad45719.2019.8942082
  • Ashley Prater-Bennette; Kenneth T. Carr; Fauzia Ahmad, Big Data: Learning, Analytics, and Applications (2019), p. 22 | DOI:10.1117/12.2519095
  • Xiaogang Zhong; Hailong Yang; Zhongzhi Luan; Lin Gan; Guangwen Yang; Depei Qian swTensor: accelerating tensor decomposition on Sunway architecture, CCF Transactions on High Performance Computing, Volume 1 (2019) no. 3-4, p. 161 | DOI:10.1007/s42514-019-00017-5
  • Xi Chen; Jie Li; Yun Song; Feng Li; Jianjun Chen; Kun Yang Low-Rank Tensor Completion for Image and Video Recovery via Capped Nuclear Norm, IEEE Access, Volume 7 (2019), p. 112142 | DOI:10.1109/access.2019.2934482
  • Morteza Ashraphijuo; Vaneet Aggarwal; Xiaodong Wang Deterministic and Probabilistic Conditions for Finite Completability of Low-Tucker-Rank Tensor, IEEE Transactions on Information Theory, Volume 65 (2019) no. 9, p. 5380 | DOI:10.1109/tit.2019.2919568
  • Jeremy E. Cohen; Nicolas Gillis Identifiability of complete dictionary learning, SIAM Journal on Mathematics of Data Science, Volume 1 (2019) no. 3, pp. 518-536 | DOI:10.1137/18m1233339 | Zbl:1513.68045
  • Jiawang Nie; Ke Ye Hankel tensor decompositions and ranks, SIAM Journal on Matrix Analysis and Applications, Volume 40 (2019) no. 2, pp. 486-516 | DOI:10.1137/18m1168285 | Zbl:1411.15018
  • Ashley Prater-Bennette; Lixin Shen, 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (2018), p. 1363 | DOI:10.1109/globalsip.2018.8646430
  • Anwa Zhou; Jinyan Fan Completely positive tensor recovery with minimal nuclear value, Computational Optimization and Applications, Volume 70 (2018) no. 2, pp. 419-441 | DOI:10.1007/s10589-018-0003-5 | Zbl:1391.90465
  • Qingzhu Wang; Mengying Wei; Yihai Zhu Compressive Sensing of Noisy 3-D Images Based on Threshold Selection, Journal of Advanced Computational Intelligence and Intelligent Informatics, Volume 22 (2018) no. 1, p. 70 | DOI:10.20965/jaciii.2018.p0070
  • Edoardo Ballico Set evincing the ranks with respect to an embedded variety (symmetric tensor rank and tensor rank), Mathematics, Volume 6 (2018) no. 8, p. 9 (Id/No 140) | DOI:10.3390/math6080140 | Zbl:1407.14053
  • Shmuel Friedland; Lek-Heng Lim Nuclear norm of higher-order tensors, Mathematics of Computation, Volume 87 (2018) no. 311, pp. 1255-1281 | DOI:10.1090/mcom/3239 | Zbl:1383.15018
  • Harm Derksen A general theory of singular values with applications to signal denoising, SIAM Journal on Applied Algebra and Geometry, Volume 2 (2018) no. 4, pp. 535-596 | DOI:10.1137/17m1156149 | Zbl:1408.94861
  • Qiuwei Li; Gongguo Tang, 2017 51st Asilomar Conference on Signals, Systems, and Computers (2017), p. 305 | DOI:10.1109/acssc.2017.8335189
  • Morteza Ashraphijuo; Xiaodong Wang; Vaneet Aggarwal, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2017), p. 604 | DOI:10.1109/allerton.2017.8262792
  • Morteza Ashraphijuo; Vaneet Aggarwal; Xiaodong Wang, 2017 IEEE International Symposium on Information Theory (ISIT) (2017), p. 531 | DOI:10.1109/isit.2017.8006584
  • Ashley Prater, 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (2017), p. 1 | DOI:10.1109/ssci.2017.8280968
  • Yu-Fei Gao; Xun-Chao Cong; Yue Yang; Qun Wan; Guan Gui A tensor decomposition based multiway structured sparse SAR imaging algorithm with Kronecker constraint, Algorithms, Volume 10 (2017) no. 1, p. 17 (Id/No 2) | DOI:10.3390/a10010002 | Zbl:1461.94008
  • Yu-Fei Gao; Guan Gui; Xun-Chao Cong; Yue Yang; Yan-Bin Zou; Qun Wan Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD, EURASIP Journal on Advances in Signal Processing, Volume 2017 (2017) no. 1 | DOI:10.1186/s13634-017-0479-7
  • Yong Li; Wenrui Dai; Junni Zou; Hongkai Xiong; Yuan F. Zheng Structured Sparse Representation With Union of Data-Driven Linear and Multilinear Subspaces Model for Compressive Video Sampling, IEEE Transactions on Signal Processing, Volume 65 (2017) no. 19, p. 5062 | DOI:10.1109/tsp.2017.2721905
  • Morteza Ashraphijuo; Xiaodong Wang; Vaneet Aggarwal Rank determination for low-rank data completion, Journal of Machine Learning Research (JMLR), Volume 18 (2017), p. 29 (Id/No 98) | Zbl:1441.65049
  • Alwin Stegeman; Shmuel Friedland On best rank-2 and rank-(2,2,2) approximations of order-3 tensors, Linear and Multilinear Algebra, Volume 65 (2017) no. 7, pp. 1289-1310 | DOI:10.1080/03081087.2016.1234578 | Zbl:1371.15024
  • Jiawang Nie Symmetric tensor nuclear norms, SIAM Journal on Applied Algebra and Geometry, Volume 1 (2017) no. 1, pp. 599-625 | DOI:10.1137/16m1083384 | Zbl:1372.15023
  • Yong Li; Wenrui Dai; Hongkai Xiong, 2016 Data Compression Conference (DCC) (2016), p. 181 | DOI:10.1109/dcc.2016.16
  • Lucas N. Ribeiro; Andre L. F. de Almeida; Joao C. M. Mota, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016), p. 2966 | DOI:10.1109/icassp.2016.7472221
  • Harm Derksen On the nuclear norm and the singular value decomposition of tensors, Foundations of Computational Mathematics, Volume 16 (2016) no. 3, pp. 779-811 | DOI:10.1007/s10208-015-9264-x | Zbl:1343.15016
  • Remy Boyer; Martin Haardt Noisy Compressive Sampling Based on Block-Sparse Tensors: Performance Limits and Beamforming Techniques, IEEE Transactions on Signal Processing, Volume 64 (2016) no. 23, p. 6075 | DOI:10.1109/tsp.2016.2600510
  • Qiuwei Li; Ashley Prater; Lixin Shen; Gongguo Tang, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2015), p. 53 | DOI:10.1109/camsap.2015.7383734
  • Edgar A. Bernal; Qun Li, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015), p. 2454 | DOI:10.1109/icassp.2015.7178412
  • Abdeldjalil Aissa-El-Bey; Dominique Pastor; Si Mohamed Aziz Sbai; Yasser Fadlallah Sparsity-Based Recovery of Finite Alphabet Solutions to Underdetermined Linear Systems, IEEE Transactions on Information Theory, Volume 61 (2015) no. 4, p. 2008 | DOI:10.1109/tit.2015.2399914
  • Cun Mu; Daniel Hsu; Donald Goldfarb Successive rank-one approximations for nearly orthogonally decomposable symmetric tensors, SIAM Journal on Matrix Analysis and Applications, Volume 36 (2015) no. 4, pp. 1638-1659 | DOI:10.1137/15m1010890 | Zbl:1330.15030
  • Alwin Stegeman Finding the limit of diverging components in three-way Candecomp/Parafac – a demonstration of its practical merits, Computational Statistics and Data Analysis, Volume 75 (2014), pp. 203-216 | DOI:10.1016/j.csda.2014.02.010 | Zbl:1506.62171
  • Awatif Rouijel; Khalid Minaoui; Pierre Comon; Driss Aboutajdine CP decomposition approach to blind separation for DS-CDMA system using a new performance index, EURASIP Journal on Advances in Signal Processing, Volume 2014 (2014) no. 1 | DOI:10.1186/1687-6180-2014-128
  • Shmuel Friedland; Qun Li; Dan Schonfeld Compressive Sensing of Sparse Tensors, IEEE Transactions on Image Processing, Volume 23 (2014) no. 10, p. 4438 | DOI:10.1109/tip.2014.2348796
  • Lek-Heng Lim; Pierre Comon Blind Multilinear Identification, IEEE Transactions on Information Theory, Volume 60 (2014) no. 2, p. 1260 | DOI:10.1109/tit.2013.2291876
  • Awatif Rouijel; Khalid Minaoui; Pierre Comon; Driss Aboutajdine Short: Blind Separation of the Multiarray Multisensor Systems Using the CP Decomposition, Networked Systems, Volume 8593 (2014), p. 313 | DOI:10.1007/978-3-319-09581-3_22
  • Qun Li; Dan Schonfeld; Shmuel Friedland, 2013 IEEE International Conference on Multimedia and Expo (ICME) (2013), p. 1 | DOI:10.1109/icme.2013.6607560
  • E. Ballico An upper bound for the tensor rank, ISRN Geometry, Volume 2013 (2013), p. 3 (Id/No 241835) | DOI:10.1155/2013/241835 | Zbl:1268.15026
  • Edoardo Ballico; Alessandra Bernardi; Maria Virginia Catalisano; Luca Chiantini Grassmann secants, identifiability, and linear systems of tensors, Linear Algebra and its Applications, Volume 438 (2013) no. 1, pp. 121-135 | DOI:10.1016/j.laa.2012.07.045 | Zbl:1255.14044
  • Alwin Stegeman A Three-Way Jordan Canonical Form as Limit of Low-Rank Tensor Approximations, SIAM Journal on Matrix Analysis and Applications, Volume 34 (2013) no. 2, p. 624 | DOI:10.1137/120875806
  • Ignat Domanov; Lieven De Lathauwer On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors—Part I: Basic Results and Uniqueness of One Factor Matrix, SIAM Journal on Matrix Analysis and Applications, Volume 34 (2013) no. 3, p. 855 | DOI:10.1137/120877234
  • Jean-Baptiste Hiriart-Urruty; Hai Yen Le A variational approach of the rank function, Top, Volume 21 (2013) no. 2, pp. 207-240 | DOI:10.1007/s11750-013-0283-y | Zbl:1269.49019
  • Cesar F. Caiafa; Andrzej Cichocki Multidimensional compressed sensing and their applications, WIREs Data Mining and Knowledge Discovery, Volume 3 (2013) no. 6, p. 355 | DOI:10.1002/widm.1108
  • N. D. Sidiropoulos; A. Kyrillidis Multi-Way Compressed Sensing for Sparse Low-Rank Tensors, IEEE Signal Processing Letters, Volume 19 (2012) no. 11, p. 757 | DOI:10.1109/lsp.2012.2210872
  • Morten Mørup; Lars Kai Hansen Archetypal analysis for machine learning and data mining, Neurocomputing, Volume 80 (2012), p. 54 | DOI:10.1016/j.neucom.2011.06.033
  • Alwin Stegeman Candecomp/Parafac: From Diverging Components to a Decomposition in Block Terms, SIAM Journal on Matrix Analysis and Applications, Volume 33 (2012) no. 2, p. 291 | DOI:10.1137/110825327
  • Hamza Fawzi; Paulo Tabuada; Suhas Diggavi, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2011), p. 337 | DOI:10.1109/allerton.2011.6120187
  • Anthony Man-Cho So Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems, Mathematical Programming. Series A. Series B, Volume 129 (2011) no. 2 (B), pp. 357-382 | DOI:10.1007/s10107-011-0464-0 | Zbl:1230.90156

Cité par 69 documents. Sources : Crossref, zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: