Comptes Rendus
Molecular dynamics simulation of thermodiffusion and mass diffusion in structureless and atomistic micropores
Comptes Rendus. Mécanique, Volume 341 (2013) no. 4-5, pp. 469-476.

In this work, we have studied the effect of surface roughness on thermodiffusion in simple “isotopic” mixtures confined in a slit nanopore. To do so, we have performed non-equilibrium molecular dynamics simulations of Lennard–Jones binary equimolar mixtures confined in structureless (in which the interaction with the fluid is described by a Lennard–Jones 9–3 potential) and atomistic walls for various widths, from 5 to 35 times the size of a molecule, in the NP//T ensemble. For that purpose, a new algorithm is proposed in atomistic pore. Different super-critical conditions have been explored, ranging from low to moderate densities. In addition to the thermal diffusion factor, we have also estimated the mass diffusion and thermodiffusion coefficients separately. The results show that the two types of walls lead to noticeably different results. The thermal diffusion factor tends to increase in atomistic wall and slightly decrease in structureless wall when the pore width is decreasing, this being related to the average density behaviour. More precisely, both mass and thermodiffusion coefficients are weakly affected by the pore width for structureless walls, whereas both quantities largely decrease (up to 70% and 55% respectively compared to bulk fluid) when pore size decreases in the case of a rough solid surface because of the friction on the walls.

Publié le :
DOI : 10.1016/j.crme.2013.01.015
Mots clés : Lennard–Jones, Mass diffusion, Molecular dynamics, Porous medium, Thermodiffusion, Soret effect

Rachid Hannaoui 1 ; Guillaume Galliéro 1 ; Christian Boned 1

1 LFC-R (UMR5150 with CNRS and Total), Université de Pau et des Pays de lʼAdour, BP 1151, 64013 Pau Cedex, France
@article{CRMECA_2013__341_4-5_469_0,
     author = {Rachid Hannaoui and Guillaume Galli\'ero and Christian Boned},
     title = {Molecular dynamics simulation of thermodiffusion and mass diffusion in structureless and atomistic micropores},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {469--476},
     publisher = {Elsevier},
     volume = {341},
     number = {4-5},
     year = {2013},
     doi = {10.1016/j.crme.2013.01.015},
     language = {en},
}
TY  - JOUR
AU  - Rachid Hannaoui
AU  - Guillaume Galliéro
AU  - Christian Boned
TI  - Molecular dynamics simulation of thermodiffusion and mass diffusion in structureless and atomistic micropores
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 469
EP  - 476
VL  - 341
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2013.01.015
LA  - en
ID  - CRMECA_2013__341_4-5_469_0
ER  - 
%0 Journal Article
%A Rachid Hannaoui
%A Guillaume Galliéro
%A Christian Boned
%T Molecular dynamics simulation of thermodiffusion and mass diffusion in structureless and atomistic micropores
%J Comptes Rendus. Mécanique
%D 2013
%P 469-476
%V 341
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2013.01.015
%G en
%F CRMECA_2013__341_4-5_469_0
Rachid Hannaoui; Guillaume Galliéro; Christian Boned. Molecular dynamics simulation of thermodiffusion and mass diffusion in structureless and atomistic micropores. Comptes Rendus. Mécanique, Volume 341 (2013) no. 4-5, pp. 469-476. doi : 10.1016/j.crme.2013.01.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.01.015/

[1] S.R. de Groot; P. Mazur Non-Equilibrium Thermodynamics, Dover Publications Inc., New York, 1984

[2] C. Lira-Galeana; A. Firoozabadi; J.M. Prausnitz Computation of compositional grading in hydrocarbon reservoirs application of continuous thermodynamics, Fluid Phase Equilibria, Volume 102 (1994), pp. 143-158

[3] F. Montel; J. Bickert; A. Lagisquet; G. Galliéro Initial state of petroleum reservoirs: A comprehensive approach, Journal of Petroleum Science and Engineering, Volume 58 (2007), pp. 391-402

[4] M. Touzet; G. Galliéro; V. Lazzeri; M.Z. Saghir; F. Montel; J.-C. Legros Thermodiffusion: from microgravity experiments to the initial state of petroleum reservoirs, Comptes Rendus Mécanique, Volume 339 (2011), pp. 318-323

[5] A.A. Shapiro; E.H. Stenby Factorization of transport coefficients in macroporous media, Transport in Porous Media, Volume 41 (2000), pp. 305-323

[6] J.K. Platten; P. Costesèque The soret coefficient in porous media, Journal of Porous Media, Volume 7 (2004), pp. 317-329

[7] M. Schoen Computer Simulation of Condensed Phases in Complex Geometries, Springer-Verlag, Berlin, Heidelberg, 1993

[8] I. Wold; B. Hafskjold Nonequilibrium molecular dynamics simulations of coupled heat and mass transport in binary fluid mixtures in pores, International Journal of Thermophysics, Volume 20 (1999), pp. 847-856

[9] J. Colombani; G. Galliéro; B. Duguay; J.-P. Caltagirone; F. Montel; P.A. Bopp A molecular dynamics study of thermal diffusion in a porous medium, Physical Chemistry Chemical Physics, Volume 4 (2002), pp. 313-321

[10] J. Colombani; G. Galliéro; B. Duguay; J.-P. Caltagirone; F. Montel; P.A. Bopp Molecular dynamics study of thermal diffusion in a binary mixture of alkanes trapped in a slit pore, Philosophical Magazine, Volume 83 (2003), pp. 2087-2095

[11] G. Galliéro; J. Colombani; P.A. Bopp; J.-P. Caltagirone; F. Montel Thermal diffusion in micropores by molecular dynamics computer simulation, Physica A: Statistical Mechanics and its Applications, Volume 361 (2006), pp. 494-510

[12] S. Yeganegi; E. Pak The effect of corrugation of pore wall on the thermal diffusion in nanopores by molecular dynamics simulations, Chemical Physics, Volume 333 (2007), pp. 69-76

[13] R. Hannaoui; G. Galliéro; D. Ameur; C. Boned Molecular dynamics simulations of heat and mass transport properties of a simple binary mixture in micro/meso-pores, Chemical Physics, Volume 389 (2011), pp. 53-57

[14] A. Saugey; L. Joly; C. Ybert; J.-L. Barrat; L. Bocquet Diffusion in pores and its dependence on boundary conditions, Journal of Physics Condensed Matter, Volume 17 (2005), p. S4075-S4090

[15] J.C. Wang; K.A. Fichthorn A method for molecular dynamics simulation of confined fluids, Journal of Chemical Physics, Volume 112 (2000), pp. 8252-8259

[16] M.P. Allen; D.J. Tildesley Computer Simulation of Liquids, Clarendon Press, Oxford, UK, 1987

[17] H. Eslami; F. Mozaffari; J. Moghadasi; F. Müller-Plathe Molecular dynamics simulation of confined fluids in isosurface-isothermal-isobaric ensemble, Journal of Chemical Physics, Volume 129 (2008), p. 194702

[18] H.J.C. Berendsen; J.P.M. Postma; W.F. van Gunsteren; A. DiNola; J.R. Haak Molecular dynamics with coupling to an external bath, Journal of Chemical Physics, Volume 81 (1984), pp. 3684-3690

[19] F. Müller-Plathe; D. Reith Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients, Computational and Theoretical Polymer Science, Volume 9 (1999), pp. 203-209

[20] G. Galliéro; M. Bugel; B. Duguay; F. Montel Mass effect on thermodiffusion using molecular dynamics, Journal of Non-Equilibrium Thermodynamics, Volume 32 (2007), pp. 251-258

[21] M.S. Zabaloy; V.R. Vasquez; E.A. Macedo Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data, Fluid Phase Equilibria, Volume 242 (2006), pp. 43-56

[22] H. Hoang; G. Galliero Grand canonical-like molecular dynamics simulations: Application to anisotropic mass diffusion in a nanoporous medium, Journal of Chemical Physics, Volume 136 (2012), p. 184702

Cité par Sources :

Commentaires - Politique