Comptes Rendus
Attainability of the Hashin–Shtrikman bounds for two-phase well-ordered composites with a nonlinear phase
Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 766-769.

The Hashin–Shtrikman (HS) bounds for two-phase well-ordered composites are known to be attained by certain sequentially laminated constructions when the constituent phases exhibit a linear behavior. This implies that the bounds are optimal for that class of materials. In this Note we show that the bounds are still attained by sequentially laminated constructions when one of the phases is nonlinear, and that, consequently, they are optimal for a larger class of materials.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.10.003
Mots clés : Composites, Homogenization, Bounds, Nonlinearity

Martín I. Idiart 1, 2

1 Departamento de Aeronáutica, Facultad de Ingeniería, Universidad Nacional de La Plata, Avda. 1 esq. 47, La Plata B1900TAG, Argentina
2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, Calle 8 No. 1467, La Plata B1904CMC, Argentina
@article{CRMECA_2013__341_11-12_766_0,
     author = {Mart{\'\i}n I. Idiart},
     title = {Attainability of the {Hashin{\textendash}Shtrikman} bounds for two-phase well-ordered composites with a nonlinear phase},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {766--769},
     publisher = {Elsevier},
     volume = {341},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crme.2013.10.003},
     language = {en},
}
TY  - JOUR
AU  - Martín I. Idiart
TI  - Attainability of the Hashin–Shtrikman bounds for two-phase well-ordered composites with a nonlinear phase
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 766
EP  - 769
VL  - 341
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2013.10.003
LA  - en
ID  - CRMECA_2013__341_11-12_766_0
ER  - 
%0 Journal Article
%A Martín I. Idiart
%T Attainability of the Hashin–Shtrikman bounds for two-phase well-ordered composites with a nonlinear phase
%J Comptes Rendus. Mécanique
%D 2013
%P 766-769
%V 341
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2013.10.003
%G en
%F CRMECA_2013__341_11-12_766_0
Martín I. Idiart. Attainability of the Hashin–Shtrikman bounds for two-phase well-ordered composites with a nonlinear phase. Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 766-769. doi : 10.1016/j.crme.2013.10.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.003/

[1] G.W. Milton The Theory of Composites, Cambridge University Press, Cambridge, UK, 2002

[2] P. Ponte Castañeda; P. Suquet Nonlinear composites, Adv. Appl. Mech., Volume 34 (1998), pp. 171-302

[3] P. Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 45-71

[4] P. Ponte Castañeda New variational principles in plasticity and their application to composite materials, J. Mech. Phys. Solids, Volume 40 (1992), pp. 1757-1788

[5] J.R. Willis On methods for bounding the overall properties of nonlinear composites, J. Mech. Phys. Solids, Volume 39 (1991), pp. 73-86

[6] D.R.S. Talbot; J.R. Willis Some simple explicit bounds for the overall behaviour of nonlinear composites, Int. J. Solids Struct., Volume 48 (1992), pp. 1981-1987

[7] M.I. Idiart; P. Ponte Castañeda Variational linear comparison bounds for nonlinear composites with anisotropic phases. I. General results, Proc. R. Soc. A, Volume 463 (2007), pp. 907-924

[8] J.R. Willis Bounds and self-consistent estimates for the overall moduli of anisotropic composites, J. Mech. Phys. Solids, Volume 25 (1977), pp. 185-202

[9] Z. Hashin; S. Shtrikman A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140

[10] L. Tartar H-measures, a new approach for studying homogenization, oscillation and concentration effects in partial differential equations, Proc. R. Soc. Edinb. A, Volume 115 (1990), pp. 193-230

[11] P. Gérard Microlocal defect measures, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 1761-1794

[12] G. Allaire; H. Maillot H-measures and bounds on the effective properties of composite materials, Port. Math., Volume 60 (2003), pp. 161-192

[13] R. Kohn The relaxation of a double-well energy, Contin. Mech. Thermodyn., Volume 3 (1991), pp. 193-236

[14] G. deBotton; I. Hariton Rank-infinity laminated composites attaining the Hashin–Shtrikman bounds, Phys. Lett. A, Volume 297 (2002), pp. 442-445

[15] P. Ponte Castañeda The effective properties of brittle/ductile incompressible composites (A.C.F. Cocks; A.R.S. Ponter, eds.), Inelastic Deformations of Composite Materials, Elsevier, 1991, pp. 215-231

[16] M.I. Idiart Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates, J. Mech. Phys. Solids, Volume 56 (2008), pp. 2599-2617

[17] G. deBotton; I. Hariton High-rank nonlinear sequentially laminated composites and their possible tendency towards isotropic behavior, J. Mech. Phys. Solids, Volume 50 (2002), pp. 2577-2595

[18] G. deBotton Transversely isotropic sequentially laminated composites in finite elasticity, J. Mech. Phys. Solids, Volume 53 (2005), pp. 1334-1361

[19] I.Y. Tsvelodub Physically nonlinear ellipsoidal inclusion in a linearly elastic medium, J. Appl. Mech. Tech. Phys., Volume 45 (2004), pp. 69-75

[20] P. Suquet; P. Ponte Castañeda Small-contrast perturbation expansions for the effective properties of nonlinear composites, C. R. Acad. Sci. Paris, Ser. II, Volume 317 (1993), pp. 1515-1522

Cité par Sources :

Commentaires - Politique