Comptes Rendus
On the incorporation of surface tension in finite-element calculations
Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 770-775.

The aim of this paper is to propose a new method for introduction of surface tension effects (including both the “curvature effect” and the “Marangoni effect”) into finite-element computations. Usual methods consider the loads induced by surface tension onto the fluid. We propose instead to directly model surface tension itself through the introduction into the mesh of surfacic elements having a planar hydrostatic state of stress, and representing a fictitious tight membrane stuck onto the interface. Such a method is very easy to program and very efficient. Two numerical examples are provided to illustrate this efficiency. The first pertains to a problem of small oscillations of a liquid due to combined gravity and surface tension, and illustrates the effect of the normal component of the surface tension load (curvature effect). The second pertains to a problem involving a surfacic gradient of temperature, and illustrates the effect of the tangential component of the surface tension load (Marangoni effect).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2013.10.004
Mots clés : Surface tension, Finite-element method, Membrane elements

Jean-Baptiste Leblond 1 ; Hussein Amin El Sayed 2 ; Jean-Michel Bergheau 2

1 UPMC, Université Paris-6, UMR 7190, Institut Jean-Le-Rond-dʼAlembert, Tour 65–55, 4, place Jussieu, 75252 Paris cedex 05, France
2 Université de Lyon, ENISE, LTDS, UMR 5513 CNRS, 58, rue Jean-Parot, 42023 Saint-Étienne cedex 02, France
@article{CRMECA_2013__341_11-12_770_0,
     author = {Jean-Baptiste Leblond and Hussein Amin El Sayed and Jean-Michel Bergheau},
     title = {On the incorporation of surface tension in finite-element calculations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {770--775},
     publisher = {Elsevier},
     volume = {341},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crme.2013.10.004},
     language = {en},
}
TY  - JOUR
AU  - Jean-Baptiste Leblond
AU  - Hussein Amin El Sayed
AU  - Jean-Michel Bergheau
TI  - On the incorporation of surface tension in finite-element calculations
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 770
EP  - 775
VL  - 341
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2013.10.004
LA  - en
ID  - CRMECA_2013__341_11-12_770_0
ER  - 
%0 Journal Article
%A Jean-Baptiste Leblond
%A Hussein Amin El Sayed
%A Jean-Michel Bergheau
%T On the incorporation of surface tension in finite-element calculations
%J Comptes Rendus. Mécanique
%D 2013
%P 770-775
%V 341
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2013.10.004
%G en
%F CRMECA_2013__341_11-12_770_0
Jean-Baptiste Leblond; Hussein Amin El Sayed; Jean-Michel Bergheau. On the incorporation of surface tension in finite-element calculations. Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 770-775. doi : 10.1016/j.crme.2013.10.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.004/

[1] K.J. Ruschak A method for incorporating free surface boundaries with surface tension in finite element fluid-flow simulators, Int. J. Numer. Methods Eng., Volume 15 (1980), pp. 639-648

[2] P. Bach; O. Hassager An algorithm for the use of the Lagrangian specification in Newtonian fluid mechanics with applications to free surface fluid flow, J. Fluid Mech., Volume 152 (1985), pp. 173-190

[3] K.N. Christodoulou; L.E. Scriven The fluid mechanics of slide coating, J. Fluid Mech., Volume 208 (1989), pp. 321-354

[4] R.A. Cairncross; P.R. Schunk; T.A. Baer; R.R. Bao; P.A. Sackinger Finite element method for free surface flows of incompressible fluids in three dimensions. Part I. Boundary fitted mesh motion, Int. J. Numer. Methods Fluids, Volume 33 (2000), pp. 375-403

[5] M. Bellet Implementation of surface tension with wall adhesion effects in a three-dimensional finite element model for fluid flow, Commun. Numer. Methods Eng., Volume 17 (2001), pp. 563-579

[6] W. Dettmer; P.H. Saksono; D. Peric On a finite element formulation for incompressible Newtonian fluid flows on moving domains in the presence of surface tension, Commun. Numer. Methods Eng., Volume 19 (2003), pp. 659-668

[7] S. Rabier; M. Medale Computation of free surface flows with a projection FEM in a moving mesh framework, Comput. Methods Appl. Mech. Eng., Volume 192 (2003), pp. 4703-4721

[8] W. Dettmer; D. Peric A computational framework for free surface fluid flows accounting for surface tension, Comput. Methods Appl. Mech. Eng., Volume 195 (2006), pp. 3038-3071

[9] P.H. Saksono; D. Peric On finite element modelling of surface tension. Variational formulation and applications – Part I: Quasistatic problems, Comput. Mech., Volume 38 (2006), pp. 265-281

[10] A. Prosperetti Motion of two superposed viscous fluids, Phys. Fluids, Volume 24 (1981), pp. 1217-1223

Cité par Sources :

Commentaires - Politique