The aim of this paper is to propose a new method for introduction of surface tension effects (including both the “curvature effect” and the “Marangoni effect”) into finite-element computations. Usual methods consider the loads induced by surface tension onto the fluid. We propose instead to directly model surface tension itself through the introduction into the mesh of surfacic elements having a planar hydrostatic state of stress, and representing a fictitious tight membrane stuck onto the interface. Such a method is very easy to program and very efficient. Two numerical examples are provided to illustrate this efficiency. The first pertains to a problem of small oscillations of a liquid due to combined gravity and surface tension, and illustrates the effect of the normal component of the surface tension load (curvature effect). The second pertains to a problem involving a surfacic gradient of temperature, and illustrates the effect of the tangential component of the surface tension load (Marangoni effect).
Accepté le :
Publié le :
Jean-Baptiste Leblond 1 ; Hussein Amin El Sayed 2 ; Jean-Michel Bergheau 2
@article{CRMECA_2013__341_11-12_770_0, author = {Jean-Baptiste Leblond and Hussein Amin El Sayed and Jean-Michel Bergheau}, title = {On the incorporation of surface tension in finite-element calculations}, journal = {Comptes Rendus. M\'ecanique}, pages = {770--775}, publisher = {Elsevier}, volume = {341}, number = {11-12}, year = {2013}, doi = {10.1016/j.crme.2013.10.004}, language = {en}, }
TY - JOUR AU - Jean-Baptiste Leblond AU - Hussein Amin El Sayed AU - Jean-Michel Bergheau TI - On the incorporation of surface tension in finite-element calculations JO - Comptes Rendus. Mécanique PY - 2013 SP - 770 EP - 775 VL - 341 IS - 11-12 PB - Elsevier DO - 10.1016/j.crme.2013.10.004 LA - en ID - CRMECA_2013__341_11-12_770_0 ER -
%0 Journal Article %A Jean-Baptiste Leblond %A Hussein Amin El Sayed %A Jean-Michel Bergheau %T On the incorporation of surface tension in finite-element calculations %J Comptes Rendus. Mécanique %D 2013 %P 770-775 %V 341 %N 11-12 %I Elsevier %R 10.1016/j.crme.2013.10.004 %G en %F CRMECA_2013__341_11-12_770_0
Jean-Baptiste Leblond; Hussein Amin El Sayed; Jean-Michel Bergheau. On the incorporation of surface tension in finite-element calculations. Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 770-775. doi : 10.1016/j.crme.2013.10.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.004/
[1] A method for incorporating free surface boundaries with surface tension in finite element fluid-flow simulators, Int. J. Numer. Methods Eng., Volume 15 (1980), pp. 639-648
[2] An algorithm for the use of the Lagrangian specification in Newtonian fluid mechanics with applications to free surface fluid flow, J. Fluid Mech., Volume 152 (1985), pp. 173-190
[3] The fluid mechanics of slide coating, J. Fluid Mech., Volume 208 (1989), pp. 321-354
[4] Finite element method for free surface flows of incompressible fluids in three dimensions. Part I. Boundary fitted mesh motion, Int. J. Numer. Methods Fluids, Volume 33 (2000), pp. 375-403
[5] Implementation of surface tension with wall adhesion effects in a three-dimensional finite element model for fluid flow, Commun. Numer. Methods Eng., Volume 17 (2001), pp. 563-579
[6] On a finite element formulation for incompressible Newtonian fluid flows on moving domains in the presence of surface tension, Commun. Numer. Methods Eng., Volume 19 (2003), pp. 659-668
[7] Computation of free surface flows with a projection FEM in a moving mesh framework, Comput. Methods Appl. Mech. Eng., Volume 192 (2003), pp. 4703-4721
[8] A computational framework for free surface fluid flows accounting for surface tension, Comput. Methods Appl. Mech. Eng., Volume 195 (2006), pp. 3038-3071
[9] On finite element modelling of surface tension. Variational formulation and applications – Part I: Quasistatic problems, Comput. Mech., Volume 38 (2006), pp. 265-281
[10] Motion of two superposed viscous fluids, Phys. Fluids, Volume 24 (1981), pp. 1217-1223
- A membrane finite element for fast simulation of overlapping beads geometry during direct energy deposition additive manufacturing, Computational Mechanics, Volume 75 (2025) no. 2, p. 679 | DOI:10.1007/s00466-024-02525-w
- A Unified Thermo-Fluid–Solid Formulation for FSI and Phase Change Problems Based on the Particle Finite Element Method, International Journal of Computational Methods, Volume 22 (2025) no. 03 | DOI:10.1142/s0219876223420082
- An improved Arbitrary Lagrangian–Eulerian thermal-fluid model by considering powder deposition effects on melting pool during Direct Energy Deposition processes, Additive Manufacturing, Volume 96 (2024), p. 104570 | DOI:10.1016/j.addma.2024.104570
- An efficient local moving thermal-fluid framework for accelerating heat and mass transfer simulation during welding and additive manufacturing processes, Computer Methods in Applied Mechanics and Engineering, Volume 419 (2024), p. 116673 | DOI:10.1016/j.cma.2023.116673
- A comprehensive comparison of modeling strategies and simulation techniques applied in powder-based metallic additive manufacturing processes, Journal of Manufacturing Processes, Volume 110 (2024), p. 1 | DOI:10.1016/j.jmapro.2023.12.048
- An efficient reduced-physics-coupling FEM formulation for simulating a molten metal deposition geometry, European Journal of Mechanics - A/Solids, Volume 89 (2021), p. 104290 | DOI:10.1016/j.euromechsol.2021.104290
- Novel formulation for the effects of sloshing with capillarity on elastic structures in linear dynamics, International Journal for Numerical Methods in Engineering, Volume 122 (2021) no. 19, p. 5313 | DOI:10.1002/nme.6290
- New strategy of solid/fluid coupling during numerical simulation of thermo-mechanical processes, Journal of Fluids and Structures, Volume 99 (2020), p. 103161 | DOI:10.1016/j.jfluidstructs.2020.103161
- Recent Problems of Heat-Transfer Simulation in Technological Processes of Selective Laser Melting and Fusion, High Temperature, Volume 57 (2019) no. 6, p. 916 | DOI:10.1134/s0018151x19060178
Cité par 9 documents. Sources : Crossref
Commentaires - Politique