Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic–plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity – in the absence of hardening and within a linearized geometrical framework –, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity – although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic–plastic coupling in the specific case considered.
Accepté le :
Publié le :
Jean-Baptiste Leblond 1 ; Djimédo Kondo 1 ; Léo Morin 2 ; Almahdi Remmal 1, 3
@article{CRMECA_2018__346_4_336_0, author = {Jean-Baptiste Leblond and Djim\'edo Kondo and L\'eo Morin and Almahdi Remmal}, title = {Classical and sequential limit analysis revisited}, journal = {Comptes Rendus. M\'ecanique}, pages = {336--349}, publisher = {Elsevier}, volume = {346}, number = {4}, year = {2018}, doi = {10.1016/j.crme.2017.12.015}, language = {en}, }
TY - JOUR AU - Jean-Baptiste Leblond AU - Djimédo Kondo AU - Léo Morin AU - Almahdi Remmal TI - Classical and sequential limit analysis revisited JO - Comptes Rendus. Mécanique PY - 2018 SP - 336 EP - 349 VL - 346 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2017.12.015 LA - en ID - CRMECA_2018__346_4_336_0 ER -
Jean-Baptiste Leblond; Djimédo Kondo; Léo Morin; Almahdi Remmal. Classical and sequential limit analysis revisited. Comptes Rendus. Mécanique, Volume 346 (2018) no. 4, pp. 336-349. doi : 10.1016/j.crme.2017.12.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.015/
[1] Large deformation of structures by sequential limit analysis, Int. J. Solids Struct., Volume 30 (1993), pp. 1001-1013
[2] A triangular finite element for sequential limit analysis of shells, Adv. Eng. Softw., Volume 35 (2004), pp. 633-643
[3] Analytical and numerical investigation of strain-hardening viscoplastic thick walled-cylinders under internal pressure by using sequential limit analysis, Comput. Methods Appl. Mech. Eng., Volume 196 (2007), pp. 2713-2722
[4] Exact solutions of sequential limit analysis of pressurized cylinders with combined hardening based on a generalized Holder inequality: formulation and validation, Int. J. Mech. Sci., Volume 64 (2012), pp. 47-53
[5] Modelling large plastic deformations of cohesive soils using sequential limit analysis, Int. J. Numer. Anal. Methods Geomech., Volume 41 (2017), pp. 1781-1806 | DOI
[6] Deformation pattern during normal faulting: a sequential limit analysis, J. Geophys. Res., Solid Earth, Volume 122 (2017), pp. 1496-1516 | DOI
[7] Extended limit analysis theorems for continuous media, Q. Appl. Math., Volume 9 (1952), pp. 381-389
[8] On the state of stress in a plastic-rigid body at the yield point, Philos. Mag., Volume 42 (1951), pp. 868-875
[9] Cours de mécanique des milieux continus, Gauthier-Villars, Paris, 1966
[10] Calcul à la rupture et analyse limite, Presses de l'École nationale des Ponts et Chaussées, Paris, 1983
[11] Fonctionnelles Convexes, 2003 (publication of the Consiglio Nazionale delle Richerche, Roma and the Facolta di Ingegneria di Roma “Tor Vergata”)
[12] A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations, J. Mech. Phys. Solids, Volume 90 (2016), pp. 254-285
[13] Cavitation instabilities in a power hardening elastic–plastic solid, Eur. J. Mech. A, Solids, Volume 11 (1992), pp. 215-231
[14] Continuum theory of ductile rupture by void nucleation and growth: Part I – yield criteria and flow rules for porous ductile media, ASME J. Eng. Mater. Technol., Volume 99 (1977), pp. 2-15
[15] The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, Volume 15 (1967), pp. 79-95
[16] Contribution théorique à l'étude de l'écrouissage et des lois d'écoulement plastique, Proceedings of the 11th International Congress on Applied Mechanics, Springer, Munich, FRG, 1964, pp. 502-509
[17] Analytical study of a hollow sphere made of porous plastic material and subjected to hydrostatic tension – application to some problems in ductile fracture of metals, Int. J. Plast., Volume 6 (1990), pp. 677-699
[18] A self-consistent approach to coalescence of cavities in inhomogeneously voided ductile solids, J. Mech. Phys. Solids, Volume 47 (1999), pp. 1823-1841
[19] Accelerated void growth in porous ductile solids containing two populations of cavities, Int. J. Plast., Volume 16 (2000), pp. 91-120
[20] An improved Gurson-type model for hardenable ductile metals, Eur. J. Mech. A, Solids, Volume 14 (1995), pp. 499-527
[21] Numerical study and theoretical modelling of void growth in porous ductile materials subjected to cyclic loadings, Eur. J. Mech. A, Solids, Volume 55 (2016), pp. 100-109
[22] A Gurson-type layer model for ductile porous solids with isotropic and kinematic hardening, Int. J. Solids Struct., Volume 118–119 (2017), pp. 167-178
[23] A mathematical representation of the multiaxial Bauschinger effect, Mater. High Temp., Volume 24 (1966), pp. 11-26
[24] Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plast., Volume 5 (1989), pp. 247-302
[25] Plastic yield criterion and hardening of porous single crystals, Int. J. Solids Struct. (2017) | DOI
[26] On continued void growth in ductile metals subjected to cyclic loadings (J. Willis, ed.), Proceedings of the IUTAM Symposium on Nonlinear Analysis of Fracture, Kluwer, Cambridge, GB, 1997, pp. 299-310
[27] On void shape effects of periodic elasto-plastic materials subjected to cyclic loading, Eur. J. Mech. A, Solids, Volume 49 (2014), pp. 481-499
[28] A homogenization model for porous ductile solids under cyclic loads comprising a matrix with isotropic and linear kinematic hardening, Int. J. Solids Struct., Volume 121 (2017), pp. 174-190
[29] Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings, Int. J. Plast., Volume 42 (2013), pp. 1-30
- Unhomogeneous yielding of porous materials — Evolution equations, Journal of the Mechanics and Physics of Solids, Volume 196 (2025), p. 105973 | DOI:10.1016/j.jmps.2024.105973
- Selected issues in the upper bound theorem of plasticity, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 105 (2025) no. 2 | DOI:10.1002/zamm.202401219
- Effect of non-uniform void distributions on the yielding of metals, Computer Methods in Applied Mechanics and Engineering, Volume 421 (2024), p. 116810 | DOI:10.1016/j.cma.2024.116810
- A Gurson-type layer model for ductile porous solids containing ellipsoidal voids with isotropic and kinematic hardening, European Journal of Mechanics - A/Solids, Volume 104 (2024), p. 105114 | DOI:10.1016/j.euromechsol.2023.105114
- Criterion for unhomogeneous yielding of porous materials, Journal of the Mechanics and Physics of Solids, Volume 192 (2024), p. 105804 | DOI:10.1016/j.jmps.2024.105804
- Ductile rupture under cyclic loadings at high triaxiality: The influence of strain hardening and elasticity, Mechanics of Materials, Volume 192 (2024), p. 104982 | DOI:10.1016/j.mechmat.2024.104982
- On the strength-ductility modifications in pure copper after severe plastic deformation, Mechanics of Materials, Volume 195 (2024), p. 105028 | DOI:10.1016/j.mechmat.2024.105028
- A criterion for the coalescence of three-dimensional voids, Mechanics of Materials, Volume 196 (2024), p. 105077 | DOI:10.1016/j.mechmat.2024.105077
- Modeling the effects of morphological anisotropy in transformation plasticity of metals and alloys, International Journal of Solids and Structures, Volume 282 (2023), p. 112447 | DOI:10.1016/j.ijsolstr.2023.112447
- A model of void coalescence in columns, Journal of the Mechanics and Physics of Solids, Volume 171 (2023), p. 105134 | DOI:10.1016/j.jmps.2022.105134
- Void growth yield criteria for intergranular ductile fracture, Journal of the Mechanics and Physics of Solids, Volume 172 (2023), p. 105167 | DOI:10.1016/j.jmps.2022.105167
- On the structure of poroplastic constitutive relations, Journal of the Mechanics and Physics of Solids, Volume 178 (2023), p. 105344 | DOI:10.1016/j.jmps.2023.105344
- Yield surface for void growth and coalescence of porous anisotropic materials under axisymmetric loading, Journal of the Mechanics and Physics of Solids, Volume 179 (2023), p. 105365 | DOI:10.1016/j.jmps.2023.105365
- Benchmark Analysis of Ductile Fracture Simulation for Circumferentially Cracked Pipes Subjected to Bending, Journal of Pressure Vessel Technology, Volume 144 (2022) no. 1 | DOI:10.1115/1.4052852
- Local Approach of Ductile Rupture Under Cyclic Loading Conditions, Journal of Pressure Vessel Technology, Volume 144 (2022) no. 5 | DOI:10.1115/1.4053162
- A model of porous plastic single crystals based on fractal slip lines distribution, Journal of the Mechanics and Physics of Solids, Volume 167 (2022), p. 104948 | DOI:10.1016/j.jmps.2022.104948
- A novel upper bound finite-element for the limit analysis of plates and shells, European Journal of Mechanics - A/Solids, Volume 90 (2021), p. 104378 | DOI:10.1016/j.euromechsol.2021.104378
- An interphase approach of size effects in ductile porous materials, International Journal of Fracture (2021) | DOI:10.1007/s10704-020-00507-6
- Alexander Revisited: Upper- and Lower-Bound Approaches for Axial Crushing of a Circular Tube, International Journal of Mechanical Sciences, Volume 206 (2021), p. 106610 | DOI:10.1016/j.ijmecsci.2021.106610
- Extended sequential limit analysis: Addressing large deflections and shape changes in strain hardening circular membranes with a moving coordinate system, Thin-Walled Structures, Volume 169 (2021), p. 108471 | DOI:10.1016/j.tws.2021.108471
- An extended sequential limit analysis based on moving coordinates for pressurized spherical cap membranes with large shape change, Applied Mathematical Modelling, Volume 81 (2020), p. 752 | DOI:10.1016/j.apm.2020.01.023
- A hybrid approach to simulate the homogenized irreversible elastic–plastic deformations and damage of foams by neural networks, International Journal of Plasticity, Volume 126 (2020), p. 102624 | DOI:10.1016/j.ijplas.2019.11.003
- Sequential limit analysis for clamped circular membranes involving large deformation subjected to pressure load, International Journal of Mechanical Sciences, Volume 155 (2019), p. 440 | DOI:10.1016/j.ijmecsci.2019.03.011
- Void coalescence in porous ductile solids containing two populations of cavities, European Journal of Mechanics - A/Solids, Volume 72 (2018), p. 341 | DOI:10.1016/j.euromechsol.2018.04.017
- A novel treatment of Greenwood–Johnson’s mechanism of transformation plasticity - Case of spherical growth of nuclei of daughter-phase, Journal of the Mechanics and Physics of Solids, Volume 121 (2018), p. 175 | DOI:10.1016/j.jmps.2018.07.014
Cité par 25 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier