Comptes Rendus
Classical and sequential limit analysis revisited
Comptes Rendus. Mécanique, Volume 346 (2018) no. 4, pp. 336-349.

Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic–plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity – in the absence of hardening and within a linearized geometrical framework –, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity – although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic–plastic coupling in the specific case considered.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.12.015
Mots-clés : Classical limit analysis, Sequential limit analysis, Hill's approach, Drucker's approach, Elasticity, Strain hardening, Large displacements and strains

Jean-Baptiste Leblond 1 ; Djimédo Kondo 1 ; Léo Morin 2 ; Almahdi Remmal 1, 3

1 Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), CNRS, UMR 7190, Institut Jean-Le Rond-d'Alembert, Tour 65-55, 4, place Jussieu, 75252 Paris cedex 05, France
2 Arts et Métiers-ParisTech, CNAM, CNRS, UMR 8006, Laboratoire “Procédés et ingénierie en mécanique et matériaux”, 151, boulevard de l'Hôpital, 75013 Paris, France
3 AREVA, Tour Areva, 1, place Jean-Millier, 92084 Paris La Défense cedex, France
@article{CRMECA_2018__346_4_336_0,
     author = {Jean-Baptiste Leblond and Djim\'edo Kondo and L\'eo Morin and Almahdi Remmal},
     title = {Classical and sequential limit analysis revisited},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {336--349},
     publisher = {Elsevier},
     volume = {346},
     number = {4},
     year = {2018},
     doi = {10.1016/j.crme.2017.12.015},
     language = {en},
}
TY  - JOUR
AU  - Jean-Baptiste Leblond
AU  - Djimédo Kondo
AU  - Léo Morin
AU  - Almahdi Remmal
TI  - Classical and sequential limit analysis revisited
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 336
EP  - 349
VL  - 346
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2017.12.015
LA  - en
ID  - CRMECA_2018__346_4_336_0
ER  - 
%0 Journal Article
%A Jean-Baptiste Leblond
%A Djimédo Kondo
%A Léo Morin
%A Almahdi Remmal
%T Classical and sequential limit analysis revisited
%J Comptes Rendus. Mécanique
%D 2018
%P 336-349
%V 346
%N 4
%I Elsevier
%R 10.1016/j.crme.2017.12.015
%G en
%F CRMECA_2018__346_4_336_0
Jean-Baptiste Leblond; Djimédo Kondo; Léo Morin; Almahdi Remmal. Classical and sequential limit analysis revisited. Comptes Rendus. Mécanique, Volume 346 (2018) no. 4, pp. 336-349. doi : 10.1016/j.crme.2017.12.015. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.12.015/

[1] W.H. Yang Large deformation of structures by sequential limit analysis, Int. J. Solids Struct., Volume 30 (1993), pp. 1001-1013

[2] L. Corradi; N. Panzeri A triangular finite element for sequential limit analysis of shells, Adv. Eng. Softw., Volume 35 (2004), pp. 633-643

[3] S.Y. Leu Analytical and numerical investigation of strain-hardening viscoplastic thick walled-cylinders under internal pressure by using sequential limit analysis, Comput. Methods Appl. Mech. Eng., Volume 196 (2007), pp. 2713-2722

[4] S.Y. Leu; R.S. Li Exact solutions of sequential limit analysis of pressurized cylinders with combined hardening based on a generalized Holder inequality: formulation and validation, Int. J. Mech. Sci., Volume 64 (2012), pp. 47-53

[5] D. Kong; C.M. Martin; B.W. Byrne Modelling large plastic deformations of cohesive soils using sequential limit analysis, Int. J. Numer. Anal. Methods Geomech., Volume 41 (2017), pp. 1781-1806 | DOI

[6] X.P. Yuan; B. Maillot; Y.M. Leroy Deformation pattern during normal faulting: a sequential limit analysis, J. Geophys. Res., Solid Earth, Volume 122 (2017), pp. 1496-1516 | DOI

[7] D.C. Drucker; W. Prager; M.J. Greenberg Extended limit analysis theorems for continuous media, Q. Appl. Math., Volume 9 (1952), pp. 381-389

[8] R. Hill On the state of stress in a plastic-rigid body at the yield point, Philos. Mag., Volume 42 (1951), pp. 868-875

[9] J. Mandel Cours de mécanique des milieux continus, Gauthier-Villars, Paris, 1966

[10] J. Salençon Calcul à la rupture et analyse limite, Presses de l'École nationale des Ponts et Chaussées, Paris, 1983

[11] J.J. Moreau Fonctionnelles Convexes, 2003 (publication of the Consiglio Nazionale delle Richerche, Roma and the Facolta di Ingegneria di Roma “Tor Vergata”)

[12] J.-C. Michel; M. Suquet A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations, J. Mech. Phys. Solids, Volume 90 (2016), pp. 254-285

[13] V. Tvergaard; Y. Huang; J.W. Hutchinson Cavitation instabilities in a power hardening elastic–plastic solid, Eur. J. Mech. A, Solids, Volume 11 (1992), pp. 215-231

[14] A.L. Gurson Continuum theory of ductile rupture by void nucleation and growth: Part I – yield criteria and flow rules for porous ductile media, ASME J. Eng. Mater. Technol., Volume 99 (1977), pp. 2-15

[15] R. Hill The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, Volume 15 (1967), pp. 79-95

[16] J. Mandel Contribution théorique à l'étude de l'écrouissage et des lois d'écoulement plastique, Proceedings of the 11th International Congress on Applied Mechanics, Springer, Munich, FRG, 1964, pp. 502-509

[17] G. Perrin; J.-B. Leblond Analytical study of a hollow sphere made of porous plastic material and subjected to hydrostatic tension – application to some problems in ductile fracture of metals, Int. J. Plast., Volume 6 (1990), pp. 677-699

[18] J.-B. Leblond; G. Perrin A self-consistent approach to coalescence of cavities in inhomogeneously voided ductile solids, J. Mech. Phys. Solids, Volume 47 (1999), pp. 1823-1841

[19] G. Perrin; J.-B. Leblond Accelerated void growth in porous ductile solids containing two populations of cavities, Int. J. Plast., Volume 16 (2000), pp. 91-120

[20] J.-B. Leblond; G. Perrin; J. Devaux An improved Gurson-type model for hardenable ductile metals, Eur. J. Mech. A, Solids, Volume 14 (1995), pp. 499-527

[21] R. Lacroix; J.-B. Leblond; G. Perrin Numerical study and theoretical modelling of void growth in porous ductile materials subjected to cyclic loadings, Eur. J. Mech. A, Solids, Volume 55 (2016), pp. 100-109

[22] L. Morin; J.-C. Michel; J.-B. Leblond A Gurson-type layer model for ductile porous solids with isotropic and kinematic hardening, Int. J. Solids Struct., Volume 118–119 (2017), pp. 167-178

[23] P. Armstrong; C. Frederick A mathematical representation of the multiaxial Bauschinger effect, Mater. High Temp., Volume 24 (1966), pp. 11-26

[24] J.-L. Chaboche Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plast., Volume 5 (1989), pp. 247-302

[25] J. Paux; R. Brenner; D. Kondo Plastic yield criterion and hardening of porous single crystals, Int. J. Solids Struct. (2017) | DOI

[26] J. Devaux; M. Gologanu; J.-B. Leblond; G. Perrin On continued void growth in ductile metals subjected to cyclic loadings (J. Willis, ed.), Proceedings of the IUTAM Symposium on Nonlinear Analysis of Fracture, Kluwer, Cambridge, GB, 1997, pp. 299-310

[27] A. Mbiakop; A. Constantinescu; K. Danas On void shape effects of periodic elasto-plastic materials subjected to cyclic loading, Eur. J. Mech. A, Solids, Volume 49 (2014), pp. 481-499

[28] L. Cheng; K. Danas; A. Constantinescu; D. Kondo A homogenization model for porous ductile solids under cyclic loads comprising a matrix with isotropic and linear kinematic hardening, Int. J. Solids Struct., Volume 121 (2017), pp. 174-190

[29] N. Lahellec; P. Suquet Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings, Int. J. Plast., Volume 42 (2013), pp. 1-30

  • R. Vigneshwaran; A.A. Benzerga Unhomogeneous yielding of porous materials — Evolution equations, Journal of the Mechanics and Physics of Solids, Volume 196 (2025), p. 105973 | DOI:10.1016/j.jmps.2024.105973
  • Sergei Alexandrov; Elena Lyamina; Yeau‐Ren Jeng Selected issues in the upper bound theorem of plasticity, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Volume 105 (2025) no. 2 | DOI:10.1002/zamm.202401219
  • A. Cruzado; M. Nelms; A.A. Benzerga Effect of non-uniform void distributions on the yielding of metals, Computer Methods in Applied Mechanics and Engineering, Volume 421 (2024), p. 116810 | DOI:10.1016/j.cma.2024.116810
  • François Roubaud; Léo Morin; Almahdi Remmal; Stéphane Marie; Jean-Baptiste Leblond A Gurson-type layer model for ductile porous solids containing ellipsoidal voids with isotropic and kinematic hardening, European Journal of Mechanics - A/Solids, Volume 104 (2024), p. 105114 | DOI:10.1016/j.euromechsol.2023.105114
  • R. Vigneshwaran; A.A. Benzerga Criterion for unhomogeneous yielding of porous materials, Journal of the Mechanics and Physics of Solids, Volume 192 (2024), p. 105804 | DOI:10.1016/j.jmps.2024.105804
  • Almahdi Remmal; Jean-Baptiste Leblond Ductile rupture under cyclic loadings at high triaxiality: The influence of strain hardening and elasticity, Mechanics of Materials, Volume 192 (2024), p. 104982 | DOI:10.1016/j.mechmat.2024.104982
  • Pouya Tajdary; Léo Morin; Chedly Braham; Omar Novelo Peralta; Gonzalo Gonzalez On the strength-ductility modifications in pure copper after severe plastic deformation, Mechanics of Materials, Volume 195 (2024), p. 105028 | DOI:10.1016/j.mechmat.2024.105028
  • M.E. Torki; F.A. Medrano; J.-B. Leblond; A.A. Benzerga A criterion for the coalescence of three-dimensional voids, Mechanics of Materials, Volume 196 (2024), p. 105077 | DOI:10.1016/j.mechmat.2024.105077
  • Youssri El Majaty; Le-Hung Tran; Jean-Baptiste Leblond; Renald Brenner Modeling the effects of morphological anisotropy in transformation plasticity of metals and alloys, International Journal of Solids and Structures, Volume 282 (2023), p. 112447 | DOI:10.1016/j.ijsolstr.2023.112447
  • M.E. Torki; F.A. Medrano; A.A. Benzerga; J.-B. Leblond A model of void coalescence in columns, Journal of the Mechanics and Physics of Solids, Volume 171 (2023), p. 105134 | DOI:10.1016/j.jmps.2022.105134
  • C. Sénac; J. Hure; B. Tanguy Void growth yield criteria for intergranular ductile fracture, Journal of the Mechanics and Physics of Solids, Volume 172 (2023), p. 105167 | DOI:10.1016/j.jmps.2022.105167
  • A. Amine Benzerga On the structure of poroplastic constitutive relations, Journal of the Mechanics and Physics of Solids, Volume 178 (2023), p. 105344 | DOI:10.1016/j.jmps.2023.105344
  • C. Sénac; J. Hure; B. Tanguy Yield surface for void growth and coalescence of porous anisotropic materials under axisymmetric loading, Journal of the Mechanics and Physics of Solids, Volume 179 (2023), p. 105365 | DOI:10.1016/j.jmps.2023.105365
  • Tomohisa Kumagai; Yasufumi Miura; Naoki Miura; Stephane Marie; Remmal Almahdi; Akihiro Mano; Yinsheng Li; Jinya Katsuyama; Yoshitaka Wada; Jin-ha Hwang; Yun-Jae Kim; Toshio Nagashima; Nam-Su Huh; Akiyuki Takahashi Benchmark Analysis of Ductile Fracture Simulation for Circumferentially Cracked Pipes Subjected to Bending, Journal of Pressure Vessel Technology, Volume 144 (2022) no. 1 | DOI:10.1115/1.4052852
  • Al Mahdi Remmal; Stéphane Marie Local Approach of Ductile Rupture Under Cyclic Loading Conditions, Journal of Pressure Vessel Technology, Volume 144 (2022) no. 5 | DOI:10.1115/1.4053162
  • Joseph Paux; Léo Morin; Renald Brenner A model of porous plastic single crystals based on fractal slip lines distribution, Journal of the Mechanics and Physics of Solids, Volume 167 (2022), p. 104948 | DOI:10.1016/j.jmps.2022.104948
  • Jeremy Bleyer A novel upper bound finite-element for the limit analysis of plates and shells, European Journal of Mechanics - A/Solids, Volume 90 (2021), p. 104378 | DOI:10.1016/j.euromechsol.2021.104378
  • Léo Morin; Djimédo Kondo An interphase approach of size effects in ductile porous materials, International Journal of Fracture (2021) | DOI:10.1007/s10704-020-00507-6
  • G. Lu; J.L. Yu; J.J. Zhang; T.X. Yu Alexander Revisited: Upper- and Lower-Bound Approaches for Axial Crushing of a Circular Tube, International Journal of Mechanical Sciences, Volume 206 (2021), p. 106610 | DOI:10.1016/j.ijmecsci.2021.106610
  • Lijia Fan Extended sequential limit analysis: Addressing large deflections and shape changes in strain hardening circular membranes with a moving coordinate system, Thin-Walled Structures, Volume 169 (2021), p. 108471 | DOI:10.1016/j.tws.2021.108471
  • Chenghu Zhang; Lijia Fan; Yujie Yang; Yufei Tan An extended sequential limit analysis based on moving coordinates for pressurized spherical cap membranes with large shape change, Applied Mathematical Modelling, Volume 81 (2020), p. 752 | DOI:10.1016/j.apm.2020.01.023
  • Christoph Settgast; Geralf Hütter; Meinhard Kuna; Martin Abendroth A hybrid approach to simulate the homogenized irreversible elastic–plastic deformations and damage of foams by neural networks, International Journal of Plasticity, Volume 126 (2020), p. 102624 | DOI:10.1016/j.ijplas.2019.11.003
  • Chenghu Zhang; Lijia Fan; Yufei Tan Sequential limit analysis for clamped circular membranes involving large deformation subjected to pressure load, International Journal of Mechanical Sciences, Volume 155 (2019), p. 440 | DOI:10.1016/j.ijmecsci.2019.03.011
  • Léo Morin; Jean-Claude Michel Void coalescence in porous ductile solids containing two populations of cavities, European Journal of Mechanics - A/Solids, Volume 72 (2018), p. 341 | DOI:10.1016/j.euromechsol.2018.04.017
  • Youssri El Majaty; Jean-Baptiste Leblond; Djimedo Kondo A novel treatment of Greenwood–Johnson’s mechanism of transformation plasticity - Case of spherical growth of nuclei of daughter-phase, Journal of the Mechanics and Physics of Solids, Volume 121 (2018), p. 175 | DOI:10.1016/j.jmps.2018.07.014

Cité par 25 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: