Comptes Rendus
From linear to nonlinear PGD-based parametric structural dynamics
Comptes Rendus. Mécanique, Volume 347 (2019) no. 5, pp. 445-454.

The present paper analyzes different integration schemes of solid dynamics in the frequency domain involving the so-called Proper Generalized Decomposition – PGD. The last framework assumes for the solution a parametric dependency with respect to frequency. This procedure allowed introducing other parametric dependences related to loading, geometry, and material properties. However, in these cases, affine decompositions are required for an efficient computation of separated representations. A possibility for circumventing such difficulty consists in combining modal and harmonic analysis for defining an hybrid integration scheme. Moreover, such a procedure, as proved in the present work, can be easily generalized to address nonlinear parametric dynamics, as well as to solve problems with non-symmetric stiffness matrices, always operating in the domain of low frequencies.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2019.01.005
Mots clés : Linear and nonlinear parametric dynamics, Proper Generalized Decomposition, Harmonic analysis, Modal analysis, Low frequency domain

Giacomo Quaranta 1 ; Clara Argerich Martin 2 ; Ruben Ibañez 3 ; Jean Louis Duval 1 ; Elias Cueto 4 ; Francisco Chinesta 3

1 ESI GROUP, 99, rue des Solets, 94513 Rungis cedex, France
2 GeM, École centrale de Nantes, 1, rue de la Noe, 44321 Nantes cedex 3, France
3 ESI GROUP Chair, ENSAM ParisTech, 151, boulevard de l'Hôpital, 75013 Paris, France
4 Aragon Institute of Engineering Research, Universidad de Zaragoza, Edificio Betancourt, Maria de Luna, s.n., 50018 Zaragoza, Spain
@article{CRMECA_2019__347_5_445_0,
     author = {Giacomo Quaranta and Clara Argerich Martin and Ruben Iba\~nez and Jean Louis Duval and Elias Cueto and Francisco Chinesta},
     title = {From linear to nonlinear {PGD-based} parametric structural dynamics},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {445--454},
     publisher = {Elsevier},
     volume = {347},
     number = {5},
     year = {2019},
     doi = {10.1016/j.crme.2019.01.005},
     language = {en},
}
TY  - JOUR
AU  - Giacomo Quaranta
AU  - Clara Argerich Martin
AU  - Ruben Ibañez
AU  - Jean Louis Duval
AU  - Elias Cueto
AU  - Francisco Chinesta
TI  - From linear to nonlinear PGD-based parametric structural dynamics
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 445
EP  - 454
VL  - 347
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2019.01.005
LA  - en
ID  - CRMECA_2019__347_5_445_0
ER  - 
%0 Journal Article
%A Giacomo Quaranta
%A Clara Argerich Martin
%A Ruben Ibañez
%A Jean Louis Duval
%A Elias Cueto
%A Francisco Chinesta
%T From linear to nonlinear PGD-based parametric structural dynamics
%J Comptes Rendus. Mécanique
%D 2019
%P 445-454
%V 347
%N 5
%I Elsevier
%R 10.1016/j.crme.2019.01.005
%G en
%F CRMECA_2019__347_5_445_0
Giacomo Quaranta; Clara Argerich Martin; Ruben Ibañez; Jean Louis Duval; Elias Cueto; Francisco Chinesta. From linear to nonlinear PGD-based parametric structural dynamics. Comptes Rendus. Mécanique, Volume 347 (2019) no. 5, pp. 445-454. doi : 10.1016/j.crme.2019.01.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.01.005/

[1] R.W. Clough; J. Penzien Dynamics of Structures, Civil Engineering Series, McGraw-Hill, New York, NY, 1993

[2] P. Ladeveze The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables, C. R. Acad. Sci. Paris, Ser. IIb, Volume 309 (1989), pp. 1095-1099

[3] P. Ladeveze Nonlinear Computational Structural Mechanics, New Approaches and Non-incremental Methods of Calculation, Springer Verlag, 1999

[4] P. Ladeveze; L. Chamoin On the verification of model reduction methods based on the proper generalized decomposition, Comput. Methods Appl. Mech. Eng., Volume 200 (2011), pp. 2032-2047

[5] A. Barbarulo; H. Riou; L. Kovalevsky; P. Ladeveze PGD-VTCR: a reduced order model technique to solve medium frequency broad band problems on complex acoustical systems, J. Mech. Eng., Volume 60 (2014) no. 5, pp. 307-314

[6] L. Boucinha; A. Ammar; A. Gravouil; A. Nouy Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models – application to transient elastodynamics in space–time domain, Comput. Methods Appl. Mech. Eng., Volume 273 (2014), pp. 56-76

[7] S. Gregory; M. Tur; E. Nadal; J.V. Aguado; F.J. Fuenmayor; F. Chinesta Fast simulation of the pantograph-catenary dynamic interaction, Finite Elem. Anal. Des., Volume 129 (2017), pp. 1-13

[8] D. Gonzalez; E. Cueto; F. Chinesta Real-time direct integration of reduced solid dynamics equations, Int. J. Numer. Methods Eng., Volume 99 (2014) no. 9, pp. 633-653

[9] E. Cueto; D. González; I. Alfaro Proper Generalized Decompositions: An Introduction to Computer Implementation with Matlab, SpringerBriefs in Applied Sciences and Technology, Springer International Publishing, 2016

[10] S.H. Crandall The role of damping in vibration theory, J. Sound Vib., Volume 11 (1970) no. 1, pp. 3-18

[11] C. Germoso; J.V. Aguado; A. Fraile; E. Alarcon; F. Chinesta Efficient PGD-based dynamic calculation of non-linear soil behavior, C. R. Mecanique, Volume 344 (2016), pp. 24-41

[12] M.H. Malik; D. Borzacchiello; F. Chinesta; P. Diez Inclusion of frequency dependent parameters in power transmission lines simulation using harmonic analysis and proper generalized decomposition, Int. J. Numer. Model. Electron. Netw., Devices Fields, Volume 31 (2018) no. 5

[13] F. Chinesta; A. Leygue; F. Bordeu; J.V. Aguado; E. Cueto; D. Gonzalez; I. Alfaro; A. Ammar; A. Huerta Parametric PGD based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., Volume 20 (2013) no. 1, pp. 31-59

[14] F. Chinesta; R. Keunings; A. Leygue The Proper Generalized Decomposition for Advanced Numerical Simulations. A Primer, SpringerBriefs, Springer, 2014

[15] J.V. Aguado; A. Huerta; F. Chinesta; E. Cueto Real-time monitoring of thermal processes by reduced order modelling, Int. J. Numer. Methods Eng., Volume 102 (2015) no. 5, pp. 991-1017

[16] M.H. Malik; D. Borzacchiello; J.V. Aguado; F. Chinesta Advanced parametric space-frequency separated representations in structural dynamics: a harmonic-modal hybrid approach, C. R. Mecanique, Volume 346 (2018) no. 7, pp. 590-602

[17] M. Barrault; Y. Maday; N.C. Nguyen; A.T. Patera An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 9, pp. 667-672

[18] S. Chaturantabut; D.C. Sorensen Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., Volume 32 (2010) no. 5, pp. 2737-2764

[19] J.V. Aguado; D. Borzacchiello; C. Ghnatios; F. Lebel; R. Upadhyay; C. Binetruy; F. Chinesta A Simulation App based on reduced order modeling for manufacturing optimization of composite outlet guide vanes, Adv. Model. Simul. Eng. Sci., Volume 4 (2017), p. 1

Cité par Sources :

Commentaires - Politique