[Assimilation de données et prévision de la pollution dans l'équation de Burgers avec fonction d'erreur du modèle]
Cet article présente une méthode de correction permettant de mieux résoudre le problème de l'estimation et de la prédiction de la pollution décrit par les équations de Burgers. L'originalité de la méthode consiste en l'introduction d'une fonction d'erreur dans le modèle d'état du système pour modéliser l'incertitude du modèle initial. Les conditions initiales et les coefficients de diffusion, présents dans les équations de pollution et de concentration, ainsi que ceux des équations d'erreur du modèle, sont estimés en résolvant un problème d'assimilation de données. L'efficacité de la méthode de correction est comparée à celle offerte par la méthode traditionnelle sans introduction d'une fonction d'erreur.
Trois cas de tests sont présentés dans cette étude pour comparer les performances des méthodes utilisées. Dans les deux premiers tests, la référence est la solution analytique, et le dernier test est formulé dans le cadre de « l'expérience jumelle ». Les résultats numériques obtenus confirment le rôle important de l'équation d'erreur du modèle dans l'amélioration de la capacité de prédiction du système, en termes de précision et de rapidité de convergence de la méthode de correction.
This article presents a correction method for a better resolution of the problem of estimating and predicting pollution, governed by Burgers' equations. The originality of the method consists in the introduction of an error function into the system's equations of state to model uncertainty in the model. The initial conditions and diffusion coefficients, present in the equations for pollution and concentration, and also those in the model error equations, are estimated by solving a data assimilation problem. The efficiency of the correction method is compared with that produced by the traditional method without introduction of an error function.
Three test cases are presented in this study in order to compare the performances of the proposed methods. In the first two tests, the reference is the analytical solution and the last test is formulated as part of the “twin experiment”.
The numerical results obtained confirm the important role of the model error equation for improving the prediction capability of the system, in terms of both accuracy and speed of convergence.
Accepté le :
Publié le :
Mot clés : Équation de Burgers, Pollution de l'eau, Assimilation de données, Méthode optimale BFGS
Tran Thu Ha 1 ; Nguyen Hong Phong 1 ; François-Xavier Le Dimet 2 ; Hong Son Hoang 3
@article{CRMECA_2019__347_5_423_0, author = {Tran Thu Ha and Nguyen Hong Phong and Fran\c{c}ois-Xavier Le Dimet and Hong Son Hoang}, title = {Data assimilation and pollution forecasting in {Burgers'} equation with model error function}, journal = {Comptes Rendus. M\'ecanique}, pages = {423--444}, publisher = {Elsevier}, volume = {347}, number = {5}, year = {2019}, doi = {10.1016/j.crme.2019.02.002}, language = {en}, }
TY - JOUR AU - Tran Thu Ha AU - Nguyen Hong Phong AU - François-Xavier Le Dimet AU - Hong Son Hoang TI - Data assimilation and pollution forecasting in Burgers' equation with model error function JO - Comptes Rendus. Mécanique PY - 2019 SP - 423 EP - 444 VL - 347 IS - 5 PB - Elsevier DO - 10.1016/j.crme.2019.02.002 LA - en ID - CRMECA_2019__347_5_423_0 ER -
%0 Journal Article %A Tran Thu Ha %A Nguyen Hong Phong %A François-Xavier Le Dimet %A Hong Son Hoang %T Data assimilation and pollution forecasting in Burgers' equation with model error function %J Comptes Rendus. Mécanique %D 2019 %P 423-444 %V 347 %N 5 %I Elsevier %R 10.1016/j.crme.2019.02.002 %G en %F CRMECA_2019__347_5_423_0
Tran Thu Ha; Nguyen Hong Phong; François-Xavier Le Dimet; Hong Son Hoang. Data assimilation and pollution forecasting in Burgers' equation with model error function. Comptes Rendus. Mécanique, Volume 347 (2019) no. 5, pp. 423-444. doi : 10.1016/j.crme.2019.02.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.02.002/
[1] Exact and numerical solutions for non-linear Burgers' equation by VIM, Math. Comput. Model., Volume 49 (2009), pp. 1394-1400 | DOI
[2]
, Springer (2006), p. 491[3]
(1994), p. 690[4] On discretization error and its control in variational data assimilation, Tellus, Volume 60A (2008), pp. 979-991 | DOI
[5] On error analysis in data assimilation problems, Russ. J. Numer. Anal. Math. Model., Volume 17 (2002) no. 1, pp. 71-98 | DOI
[6] On deterministic error analysis in variational data assimilation, Nonlinear Process. Geophys., Volume 12 (2005) no. 4, pp. 481-490 (2005) | DOI
[7] General sensitivity analysis in data assimilation, Russ. J. Numer. Anal. Math. Model., Volume 29 (2014) no. 2, pp. 107-127 | DOI
[8] On optimal solution error covariances in variational data assimilation problems, J. Comput. Phys., Volume 229 (2010) no. 6, pp. 2159-2178 | DOI
[9] Computation of the analysis error covariance in variational data assimilation problems with nonlinear dynamics, J. Comput. Phys., Volume 230 (2011) no. 22, pp. 7923-7943 | DOI
[10] Some numerical experiments with variable-storage quasi-Newton algorithm, Math. Program., Volume 45 (1989) no. 3, pp. 407-435
[11]
, Dunod, Paris (1968), p. 426[12]
, Masson, Paris (1988), p. 296[13]
, CRC Press (1996), p. 288[14] DOI
, Springer (2017), p. 480 (ISBN: 978-3-319-43415-5) |[15] Water pollution estimation based on the 2D transport-diffusion model and the Singular Evolutive Interpolated Kalman filter, C. R. Mecanique, Volume 342 (2014), pp. 106-124 | DOI
[16] Sensitivity with respect to observations in variational data assimilation, Russ. J. Numer. Anal. Math. Model., Volume 32 (2017) no. 1, pp. 61-71 | DOI
[17] Estimation of optimal parameters for a surface hydrology model, Adv. Water Resour., Volume 26 (2003) no. 3, pp. 337-348 | DOI
[18] On the efficient low cost procedure for estimation of high-dimensional prediction error covariance matrices, Automatica, Volume 83 (2017), pp. 317-330
Cité par Sources :
Commentaires - Politique