Comptes Rendus
Article de recherche
Intrinsic transition mechanism to detonation of gaseous laminar flames in tubes
[Mécanisme intrinsèque de la transition vers la détonation des flammes laminaires en phase gazeuse dans les tubes]
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 401-427.

La transition déflagration–détonation (DDT) sur le bout arrondi d’une flamme allongée (en forme de doigt) dans un tube est analysée dans la double limite d’une grande énergie d’activation et d’un petit nombre de Mach des flammes laminaires. L’analyse asymptotique met en évidence une transition spontanée de la flamme auto-accélérée sous l’effet d’une bifurcation noeud-col de l’écoulement gazeux à l’intérieur de la structure interne de la flamme laminaire. L’analyse prédit des conditions critiques d’emballement en temps fini de la pression qui sont en bon accord avec les données expérimentales de la DDT des flammes laminaires dans les tubes.

The deflagration-to-detonation transition (DDT) on the tip of an elongated flame in a tube is analyzed in the double limit of large activation energy and small Mach number of laminar flames. A spontaneous transition of a self-accelerated laminar flame taking the form of a dynamical saddle-node bifurcation of the flow inside the inner structure of the laminar flame is exhibited by the asymptotic analysis. The predicted critical conditions for the finite-time pressure runaway are in good agreement with the experimental data of the DDT onset in tubes.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.232
Keywords: Deflagration-to-detonation transition, Asymptotic analysis, Finite time singularity, Dynamical saddle-node bifurcation
Mot clés : Transition déflagration détonation, Analyse asymptotique, Singularité en temps fini, Bifurcation dynamique noeud-col

Paul Clavin 1

1 Aix Marseille Université, CNRS, Centrale Marseille, IRPHE, UMR7342, 49 rue Joliot Curie, BP 146, 13384 Marseille Cedex 13, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_G2_401_0,
     author = {Paul Clavin},
     title = {Intrinsic transition mechanism to detonation of gaseous laminar flames in tubes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {401--427},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.232},
     language = {en},
}
TY  - JOUR
AU  - Paul Clavin
TI  - Intrinsic transition mechanism to detonation of gaseous laminar flames in tubes
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 401
EP  - 427
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.232
LA  - en
ID  - CRMECA_2023__351_G2_401_0
ER  - 
%0 Journal Article
%A Paul Clavin
%T Intrinsic transition mechanism to detonation of gaseous laminar flames in tubes
%J Comptes Rendus. Mécanique
%D 2023
%P 401-427
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.232
%G en
%F CRMECA_2023__351_G2_401_0
Paul Clavin. Intrinsic transition mechanism to detonation of gaseous laminar flames in tubes. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 401-427. doi : 10.5802/crmeca.232. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.232/

[1] K. I. Shchelkin; Yu K. Troshin Gasdynamics of Combustion, Mono Book Corp., Baltimore, 1965

[2] J. Lee The Detonation Phenomenon, Cambridge University Press, Cambridge, 2008 | DOI

[3] P. Clavin; G. Searby Combustion Waves and Fronts in Flows, Cambridge University Press, Cambridge, 2016 | DOI

[4] P. Clavin One-dimensional mechanism of deflagration-to-detonation in gas, J. Fluid. Mech., Volume 974 (2023), A46 | DOI | Zbl

[5] A. Sanchez; F. A. Williams Recent advances in understanding of flammability characteristics of hydrogen, Prog. Energy Combust. Sci., Volume 41 (2014), pp. 1-55 | DOI

[6] P. Clavin; H. Tofaili A one-dimensional model for deflagration-to-detonation transition on the tip of elongated flames in tubes, Combust. Flame, Volume 232 (2021), 111521 | DOI

[7] Ya B. Zeldovich; D. A. Frank-Kamenetskii A theory of thermal flame propagation, Acta Phys. Chim., Volume 9 (1938), pp. 341-350

[8] M.-H. Wu; C.-Y. Wang Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures, Proc. Combust. Inst., Volume 33 (2011), pp. 2287-2293

[9] V. Bykov; A. Koksharov; M. Kuzetsov; V. P. Zhukov Hydrogen-oxygen flame acceleration in narrow open ended channels, Combust. Flame, Volume 238 (2022), 111913 | DOI

[10] P. A. Urtiew; A. K. Oppenheim Experimental observations of the transition to detonation in an explosive gas, Proc. R. Soc. Lond. A, Volume 295 (1966), pp. 13-28

[11] M. A. Liberman; M. F. Ivanov; A. D. Kiverin; M. S. Kuznetsov; A. A Chukalovsky; T. V. Rakhimova Deflagration-to-detonation transition in highly reactive combustion mixtures, Acta Astronaut., Volume 67 (2010), pp. 688-701 | DOI

[12] M. Kuznetsov; M. Liberman; I. Matsukov Experimental study of the preheated zone formation and deflagration to detonation transition, Combust. Sci. Tech., Volume 182 (2010), pp. 1628-1644 | DOI

[13] Ya B. Zeldovich Regime classification of an exothermic reaction with nonuniform initial condition, Combust. Flame, Volume 39 (1980), pp. 211-214 | DOI

[14] C. Clanet; G. Searby On the tulip flame phenomenon, Combust. Flame, Volume 105 (1996), pp. 225-238 | DOI

[15] B. Deshaies; G. Joulin Flame-speed sensitivity to temperature changes and the deflagration-to-detonation transition, Combust. Flame, Volume 77 (1989), pp. 202-212 | DOI

[16] L. Kagan; G. Sivashinsky Parametric transition from deflagration to detonation: Runaway of fast flames, Proc. Combust. Inst., Volume 36 (2017), pp. 2709-2715 | DOI

[17] P. Clavin; M. Champion Asymptotic solutions of two fundamental problems in gaseous detonations, Combust. Sci. Technol., Volume 195 (2023) no. 15, pp. 3663-3694 | DOI

[18] P. Clavin Finite-time singularity associated with the deflagration-to-detonation transition on the tip of an elongated flame-front in a tube, Combust. Flame, Volume 245 (2022), 112347 | DOI

[19] P. Clavin; P. Pelcé; L. He One-dimensional vibratory instability of planar flames propagating in tubes, J. Fluid Mech., Volume 216 (1990), pp. 299-322 | DOI | Zbl

[20] G. Joulin; P. Clavin Linear stability analysis of non adiabatic flames: Diffusional-thermal model, Combust. Flame, Volume 35 (1979), pp. 139-153 | DOI

[21] R. D. Peters; M. Le Berre; Y. Pomeau Prediction of catastrophes: a experimental model, Phys. Rev. E, Volume 86 (2012), 026207 | DOI

Cité par Sources :

Commentaires - Politique