[Mécanisme intrinsèque de la transition vers la détonation des flammes laminaires en phase gazeuse dans les tubes]
La transition déflagration–détonation (DDT) sur le bout arrondi d’une flamme allongée (en forme de doigt) dans un tube est analysée dans la double limite d’une grande énergie d’activation et d’un petit nombre de Mach des flammes laminaires. L’analyse asymptotique met en évidence une transition spontanée de la flamme auto-accélérée sous l’effet d’une bifurcation noeud-col de l’écoulement gazeux à l’intérieur de la structure interne de la flamme laminaire. L’analyse prédit des conditions critiques d’emballement en temps fini de la pression qui sont en bon accord avec les données expérimentales de la DDT des flammes laminaires dans les tubes.
The deflagration-to-detonation transition (DDT) on the tip of an elongated flame in a tube is analyzed in the double limit of large activation energy and small Mach number of laminar flames. A spontaneous transition of a self-accelerated laminar flame taking the form of a dynamical saddle-node bifurcation of the flow inside the inner structure of the laminar flame is exhibited by the asymptotic analysis. The predicted critical conditions for the finite-time pressure runaway are in good agreement with the experimental data of the DDT onset in tubes.
Révisé le :
Accepté le :
Publié le :
Mot clés : Transition déflagration détonation, Analyse asymptotique, Singularité en temps fini, Bifurcation dynamique noeud-col
Paul Clavin 1
@article{CRMECA_2023__351_G2_401_0, author = {Paul Clavin}, title = {Intrinsic transition mechanism to detonation of gaseous laminar flames in tubes}, journal = {Comptes Rendus. M\'ecanique}, pages = {401--427}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, year = {2023}, doi = {10.5802/crmeca.232}, language = {en}, }
Paul Clavin. Intrinsic transition mechanism to detonation of gaseous laminar flames in tubes. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 401-427. doi : 10.5802/crmeca.232. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.232/
[1] Gasdynamics of Combustion, Mono Book Corp., Baltimore, 1965
[2] The Detonation Phenomenon, Cambridge University Press, Cambridge, 2008 | DOI
[3] Combustion Waves and Fronts in Flows, Cambridge University Press, Cambridge, 2016 | DOI
[4] One-dimensional mechanism of deflagration-to-detonation in gas, J. Fluid. Mech., Volume 974 (2023), A46 | DOI | Zbl
[5] Recent advances in understanding of flammability characteristics of hydrogen, Prog. Energy Combust. Sci., Volume 41 (2014), pp. 1-55 | DOI
[6] A one-dimensional model for deflagration-to-detonation transition on the tip of elongated flames in tubes, Combust. Flame, Volume 232 (2021), 111521 | DOI
[7] A theory of thermal flame propagation, Acta Phys. Chim., Volume 9 (1938), pp. 341-350
[8] Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures, Proc. Combust. Inst., Volume 33 (2011), pp. 2287-2293
[9] Hydrogen-oxygen flame acceleration in narrow open ended channels, Combust. Flame, Volume 238 (2022), 111913 | DOI
[10] Experimental observations of the transition to detonation in an explosive gas, Proc. R. Soc. Lond. A, Volume 295 (1966), pp. 13-28
[11] Deflagration-to-detonation transition in highly reactive combustion mixtures, Acta Astronaut., Volume 67 (2010), pp. 688-701 | DOI
[12] Experimental study of the preheated zone formation and deflagration to detonation transition, Combust. Sci. Tech., Volume 182 (2010), pp. 1628-1644 | DOI
[13] Regime classification of an exothermic reaction with nonuniform initial condition, Combust. Flame, Volume 39 (1980), pp. 211-214 | DOI
[14] On the tulip flame phenomenon, Combust. Flame, Volume 105 (1996), pp. 225-238 | DOI
[15] Flame-speed sensitivity to temperature changes and the deflagration-to-detonation transition, Combust. Flame, Volume 77 (1989), pp. 202-212 | DOI
[16] Parametric transition from deflagration to detonation: Runaway of fast flames, Proc. Combust. Inst., Volume 36 (2017), pp. 2709-2715 | DOI
[17] Asymptotic solutions of two fundamental problems in gaseous detonations, Combust. Sci. Technol., Volume 195 (2023) no. 15, pp. 3663-3694 | DOI
[18] Finite-time singularity associated with the deflagration-to-detonation transition on the tip of an elongated flame-front in a tube, Combust. Flame, Volume 245 (2022), 112347 | DOI
[19] One-dimensional vibratory instability of planar flames propagating in tubes, J. Fluid Mech., Volume 216 (1990), pp. 299-322 | DOI | Zbl
[20] Linear stability analysis of non adiabatic flames: Diffusional-thermal model, Combust. Flame, Volume 35 (1979), pp. 139-153 | DOI
[21] Prediction of catastrophes: a experimental model, Phys. Rev. E, Volume 86 (2012), 026207 | DOI
Cité par Sources :
Commentaires - Politique