Comptes Rendus
Instabilities, patterns
Shape dynamics of rotating polygons on the surface of liquid nitrogen in a Leidenfrost state
Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 457-473.

Dans cet article nous nous intéressons au cas d’un volume d’azote liquide en état de caléfaction mis en rotation dans un récipient cylindrique chauffé. La surface libre du liquide, initialement sous forme d’un tore axisymétrique, va se déstabiliser et se restructurer en une série de polygones tournants dont le nombre de côtés diminue à mesure que le liquide ralentit. Ce facettage apparaît spontanément alors même que le liquide connait une violente ébullition et un écoulement extrêmement turbulent. Nous démontrons expérimentalement que les formes observées peuvent être décrites par la combinaison d’un petit nombre de modes de Fourier et nous étudions l’évolution de ces modes en termes d’amplitude et de fréquence depuis le premier polygone visible jusqu’à la fin de la rotation du liquide. Nous comparons nos résultats expérimentaux avec un modèle théorique décrivant la perte de stabilité des écoulements de type vortex potentiel et nous soutenons que le premier polygone observable suite à la déstabilisation de la forme axisymétrique peut être décrit par ce modèle. Cet article est dédié à la mémoire d’Yves Couder qui fut pour nous un collègue, un ami et une intarissable source d’inspiration.

When liquid nitrogen is set into rotation in a warm pot, the surface, initially forming an axis-symmetrical, toroidal shape, spontaneously re-structures into a series of rotating polygons with a diminishing number of corners, while slowing down. This spontaneous “ordering” occurs despite the violently turbulent and boiling state of the fluid. We show experimentally that these shapes are well-described as a sum of a few Fourier modes, and we present experimental results for the development of the frequencies and amplitudes of these wave-modes during the transient process. We compare our results with the theoretical results for the instabilities of a potential vortex flow and argue that the first polygon formed in the transient process should be described by this theory. The paper is dedicated to the memory of Yves Couder, colleague, friend and a life-long source of inspiration.

Publié le :
DOI : 10.5802/crmeca.24
Mots clés : Rotating polygons, Fluid instabilities, Free surface flows, Spontaneous symmetry breaking, Shape dynamics
Jacob S. Bach 1 ; Alexis Duchesne 1, 2 ; Tomas Bohr 1

1 Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
2 Université de Lille, CNRS, UMR 8520-IEMN, Avenue Poincaré, 59652 Villeneuve d’Ascq, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2020__348_6-7_457_0,
     author = {Jacob S. Bach and Alexis Duchesne and Tomas Bohr},
     title = {Shape dynamics of rotating polygons on~the~surface of liquid nitrogen in a {Leidenfrost~state}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {457--473},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {6-7},
     year = {2020},
     doi = {10.5802/crmeca.24},
     language = {en},
}
TY  - JOUR
AU  - Jacob S. Bach
AU  - Alexis Duchesne
AU  - Tomas Bohr
TI  - Shape dynamics of rotating polygons on the surface of liquid nitrogen in a Leidenfrost state
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 457
EP  - 473
VL  - 348
IS  - 6-7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.24
LA  - en
ID  - CRMECA_2020__348_6-7_457_0
ER  - 
%0 Journal Article
%A Jacob S. Bach
%A Alexis Duchesne
%A Tomas Bohr
%T Shape dynamics of rotating polygons on the surface of liquid nitrogen in a Leidenfrost state
%J Comptes Rendus. Mécanique
%D 2020
%P 457-473
%V 348
%N 6-7
%I Académie des sciences, Paris
%R 10.5802/crmeca.24
%G en
%F CRMECA_2020__348_6-7_457_0
Jacob S. Bach; Alexis Duchesne; Tomas Bohr. Shape dynamics of rotating polygons on the surface of liquid nitrogen in a Leidenfrost state. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 457-473. doi : 10.5802/crmeca.24. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.24/

[1] Y. Couder Submillimeter cyclotron resonance in tellurium, Phys. Rev. Lett., Volume 22 (1969), pp. 890-892 | DOI

[2] E. Fort; A. Eddi; J. Moukhtar; A. Boudaoud; Y. Couder Path-memory induced quantization of classical orbits, Proc. Natl Acad. Sci. USA, Volume 107 (2010) no. 41, pp. 17515-17520 | DOI

[3] Y. Couder The observation of a shear-flow instability in a rotating system with a soap membrane, C. R. Acad. Sci. Ser. II, Volume 293 (1981) no. 1, p. 1

[4] A. Arneodo; F. Argoul; Y. Couder; M. Rabaud Diffusion controlled growth phenomena: from smooth interfaces to fractal structures, NATO ASI Ser. B, Volume 276 (1991) no. 297, p. 1

[5] Y. Couder; L. Pauchard; C. Allain; M. Adda-Bedia; S. Douady The leaf venation as formed in a tensorial field, Eur. Phys. J. B, Volume 28 (2002), pp. 135-138 | DOI

[6] S. Bohn; B. Andreotti; S. Douady; J. Munzinger; Y. Couder Constitutive property of the local organization of leaf venation networks, Phys. Rev. E, Volume 65 (2002) (061914)

[7] O. Hamant et al. Developmental patterning by mechanical signals in arabidopsis, Science, Volume 322 (2008), p. 1650 | DOI

[8] K. H. Jensen; E. Rio; R. Hansen; C. Clanet; T. Bohr Osmotically driven pipe flows and their relation to sugar transport in plants, J. Fluid Mech., Volume 636 (2009), p. 371 | DOI | Zbl

[9] S. Perrard; Y. Couder; E. Fort; L. Limat Leidenfrost levitated liquid tori, Europhys. Lett., Volume 100 (1969) (54006)

[10] C. Ellegaard; A. E.Hansen; A. Haaning; A. Marcussen; T. Bohr; J. Hansen; S. Watanabe Creating corners in kitchen sink flows, Nature, Volume 392 (1998), pp. 767-768 | DOI

[11] G. H. Vatistas A note on liquid vortex sloshing and Kelvin’s equilibria, J. Fluid Mech., Volume 217 (1990), pp. 241-248 | DOI

[12] T. R. N. Jansson; M. P. Haspang; K. H.Jensen; P. Hersen; T. Bohr Polygons on a rotating fluid surface, Phys. Rev. Lett., Volume 96 (2006) (174502)

[13] R. Bergman; L. Tophøj; T. A. M. Homan; P. Hersen; A. Andersen; T. Bohr Polygon formation and surface flow on a rotating fluid surface, J. Fluid Mech., Volume 679 (2011), pp. 415-431 | DOI | Zbl

[14] J. Bush; J. Aristoff; A. E. Hosoi Model for polygonal hydraulic jumps, J. Fluid Mech., Volume 558 (2016), p. 33

[15] E. A. Martens; S. Watanabe; T. Bohr Model for polygonal hydraulic jumps, Phys. Rev. E, Volume 85 (2012) (036316)

[16] L. Tophøj; J. Mougel; T. Bohr; D. Fabre Rotating polygon instability of a swirling free surface flow, Phys. Rev. Lett., Volume 110 (2013) no. 19 (194502) | DOI

[17] J. Mougel; D. Fabre; L. Lacaze; T. Bohr On the instabilities of a potential vortex with a free surface, J. Fluid Mech., Volume 824 (2017) no. 19, pp. 230-264 | DOI | MR | Zbl

[18] G. H. Vatistas; H. A. Abderrahmane; M. H. K. Siddiqui Experimental confirmation of Kelvin’s equilibria, Phys. Rev. Lett., Volume 100 (2008) (174503) | DOI

[19] B. Bach; E. C. Linnartz; M. H. Vested; A. Andersen; T. Bohr From Newton’s bucket to rotating polygons: experiments on surface instabilities in swirling flows, J. Fluid Mech., Volume 759 (2014), pp. 386-403 | DOI

[20] L. Tophøj; T. Bohr Stationary ideal flow on a free surface of a given shape, J. Fluid Mech., Volume 721 (2013), pp. 28-45 | DOI | MR | Zbl

[21] J. Mougel; D. Fabre; L. Lacaze Waves in Newton’s bucket, J. Fluid Mech., Volume 783 (2015), pp. 211-250 | DOI | MR | Zbl

[22] R. Cairns The role of negative energy waves in some instabilities of parallel flows, J. Fluid Mech., Volume 92 (1979), p. 1 | DOI | Zbl

[23] K. Iga; S. Yokota; S. Watanabe; T. Ikeda; H. Niino; N. Misawa Various phenomena on a water vortex in a cylindrical tank over a rotating bottom, Fluid Dyn. Res., Volume 46 (2014) (031409) | Zbl

[24] M. Iima; Y. Tasaka Dynamics of flow structures and surface shapes in the surface switching of rotating fluid, J. Fluid Mech., Volume 789 (2016), pp. 402-424 | DOI | MR

[25] R. Yellin-Bergovoy; E. Heifetz; O. M. Umurhan Physical mechanism of centrifugal-gravity wave resonant instability in azimuthally symmetric swirling flows, Phys. Rev. Fluids, Volume 2 (2017) (104801) | DOI

[26] A. Duchesne; T. Bohr; B. Bohr; L. Tophøj Nitrogen swirl: creating rotating polygons in a boiling liquid, Phys. Rev. Fluids, Volume 4 (2019) (100507) | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Terra Bulla, the influence of Yves Couder on the emerging domain of arts and physics sciences

Jean-Marc Chomaz

C. R. Méca (2020)


Instability of a swirling bubble ring

Yonghui Xu; Ivan Delbende; Daniel Fuster; ...

C. R. Méca (2020)


Hydrodynamic quantum field theory: the free particle

Yuval Dagan; John W. M. Bush

C. R. Méca (2020)