Dans cet article nous nous intéressons au cas d’un volume d’azote liquide en état de caléfaction mis en rotation dans un récipient cylindrique chauffé. La surface libre du liquide, initialement sous forme d’un tore axisymétrique, va se déstabiliser et se restructurer en une série de polygones tournants dont le nombre de côtés diminue à mesure que le liquide ralentit. Ce facettage apparaît spontanément alors même que le liquide connait une violente ébullition et un écoulement extrêmement turbulent. Nous démontrons expérimentalement que les formes observées peuvent être décrites par la combinaison d’un petit nombre de modes de Fourier et nous étudions l’évolution de ces modes en termes d’amplitude et de fréquence depuis le premier polygone visible jusqu’à la fin de la rotation du liquide. Nous comparons nos résultats expérimentaux avec un modèle théorique décrivant la perte de stabilité des écoulements de type vortex potentiel et nous soutenons que le premier polygone observable suite à la déstabilisation de la forme axisymétrique peut être décrit par ce modèle. Cet article est dédié à la mémoire d’Yves Couder qui fut pour nous un collègue, un ami et une intarissable source d’inspiration.
When liquid nitrogen is set into rotation in a warm pot, the surface, initially forming an axis-symmetrical, toroidal shape, spontaneously re-structures into a series of rotating polygons with a diminishing number of corners, while slowing down. This spontaneous “ordering” occurs despite the violently turbulent and boiling state of the fluid. We show experimentally that these shapes are well-described as a sum of a few Fourier modes, and we present experimental results for the development of the frequencies and amplitudes of these wave-modes during the transient process. We compare our results with the theoretical results for the instabilities of a potential vortex flow and argue that the first polygon formed in the transient process should be described by this theory. The paper is dedicated to the memory of Yves Couder, colleague, friend and a life-long source of inspiration.
Jacob S. Bach 1 ; Alexis Duchesne 1, 2 ; Tomas Bohr 1
@article{CRMECA_2020__348_6-7_457_0, author = {Jacob S. Bach and Alexis Duchesne and Tomas Bohr}, title = {Shape dynamics of rotating polygons on~the~surface of liquid nitrogen in a {Leidenfrost~state}}, journal = {Comptes Rendus. M\'ecanique}, pages = {457--473}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {6-7}, year = {2020}, doi = {10.5802/crmeca.24}, language = {en}, }
TY - JOUR AU - Jacob S. Bach AU - Alexis Duchesne AU - Tomas Bohr TI - Shape dynamics of rotating polygons on the surface of liquid nitrogen in a Leidenfrost state JO - Comptes Rendus. Mécanique PY - 2020 SP - 457 EP - 473 VL - 348 IS - 6-7 PB - Académie des sciences, Paris DO - 10.5802/crmeca.24 LA - en ID - CRMECA_2020__348_6-7_457_0 ER -
%0 Journal Article %A Jacob S. Bach %A Alexis Duchesne %A Tomas Bohr %T Shape dynamics of rotating polygons on the surface of liquid nitrogen in a Leidenfrost state %J Comptes Rendus. Mécanique %D 2020 %P 457-473 %V 348 %N 6-7 %I Académie des sciences, Paris %R 10.5802/crmeca.24 %G en %F CRMECA_2020__348_6-7_457_0
Jacob S. Bach; Alexis Duchesne; Tomas Bohr. Shape dynamics of rotating polygons on the surface of liquid nitrogen in a Leidenfrost state. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 457-473. doi : 10.5802/crmeca.24. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.24/
[1] Submillimeter cyclotron resonance in tellurium, Phys. Rev. Lett., Volume 22 (1969), pp. 890-892 | DOI
[2] Path-memory induced quantization of classical orbits, Proc. Natl Acad. Sci. USA, Volume 107 (2010) no. 41, pp. 17515-17520 | DOI
[3] The observation of a shear-flow instability in a rotating system with a soap membrane, C. R. Acad. Sci. Ser. II, Volume 293 (1981) no. 1, p. 1
[4] Diffusion controlled growth phenomena: from smooth interfaces to fractal structures, NATO ASI Ser. B, Volume 276 (1991) no. 297, p. 1
[5] The leaf venation as formed in a tensorial field, Eur. Phys. J. B, Volume 28 (2002), pp. 135-138 | DOI
[6] Constitutive property of the local organization of leaf venation networks, Phys. Rev. E, Volume 65 (2002) (061914)
[7] et al. Developmental patterning by mechanical signals in arabidopsis, Science, Volume 322 (2008), p. 1650 | DOI
[8] Osmotically driven pipe flows and their relation to sugar transport in plants, J. Fluid Mech., Volume 636 (2009), p. 371 | DOI | Zbl
[9] Leidenfrost levitated liquid tori, Europhys. Lett., Volume 100 (1969) (54006)
[10] Creating corners in kitchen sink flows, Nature, Volume 392 (1998), pp. 767-768 | DOI
[11] A note on liquid vortex sloshing and Kelvin’s equilibria, J. Fluid Mech., Volume 217 (1990), pp. 241-248 | DOI
[12] Polygons on a rotating fluid surface, Phys. Rev. Lett., Volume 96 (2006) (174502)
[13] Polygon formation and surface flow on a rotating fluid surface, J. Fluid Mech., Volume 679 (2011), pp. 415-431 | DOI | Zbl
[14] Model for polygonal hydraulic jumps, J. Fluid Mech., Volume 558 (2016), p. 33
[15] Model for polygonal hydraulic jumps, Phys. Rev. E, Volume 85 (2012) (036316)
[16] Rotating polygon instability of a swirling free surface flow, Phys. Rev. Lett., Volume 110 (2013) no. 19 (194502) | DOI
[17] On the instabilities of a potential vortex with a free surface, J. Fluid Mech., Volume 824 (2017) no. 19, pp. 230-264 | DOI | MR | Zbl
[18] Experimental confirmation of Kelvin’s equilibria, Phys. Rev. Lett., Volume 100 (2008) (174503) | DOI
[19] From Newton’s bucket to rotating polygons: experiments on surface instabilities in swirling flows, J. Fluid Mech., Volume 759 (2014), pp. 386-403 | DOI
[20] Stationary ideal flow on a free surface of a given shape, J. Fluid Mech., Volume 721 (2013), pp. 28-45 | DOI | MR | Zbl
[21] Waves in Newton’s bucket, J. Fluid Mech., Volume 783 (2015), pp. 211-250 | DOI | MR | Zbl
[22] The role of negative energy waves in some instabilities of parallel flows, J. Fluid Mech., Volume 92 (1979), p. 1 | DOI | Zbl
[23] Various phenomena on a water vortex in a cylindrical tank over a rotating bottom, Fluid Dyn. Res., Volume 46 (2014) (031409) | Zbl
[24] Dynamics of flow structures and surface shapes in the surface switching of rotating fluid, J. Fluid Mech., Volume 789 (2016), pp. 402-424 | DOI | MR
[25] Physical mechanism of centrifugal-gravity wave resonant instability in azimuthally symmetric swirling flows, Phys. Rev. Fluids, Volume 2 (2017) (104801) | DOI
[26] Nitrogen swirl: creating rotating polygons in a boiling liquid, Phys. Rev. Fluids, Volume 4 (2019) (100507) | DOI
Cité par Sources :
Commentaires - Politique