[Simulation de la cicatrisation osseuse avec des échafaudages bio-résorbables dans un système tridimensionnel : aperçus sur la résorption et l’intégration des greffes]
Cette étude présente un modèle tridimensionnel (3D) destiné à explorer les interactions entre le tissu osseux trabéculaire et les greffes bio-résorbables, en se concentrant sur leur rôle dans les processus de remodelage osseux. En s’appuyant sur les principes de la poroélasticité, le modèle reproduit le comportement mécanique de l’os et de la greffe en tant que milieux poreux, dont l’interaction est influencée par des charges mécaniques variables dans le temps et par des stimuli mécaniques diffusifs. Ces stimuli, issus de la densité d’énergie de déformation, se propagent à travers le système, déclenchant la formation osseuse et la résorption des greffes dans des régions éloignées. Les simulations numériques mettent en évidence l’impact déterminant de la fréquence et de l’intensité des charges sur l’efficacité du remodelage, des valeurs plus élevées favorisant une densité osseuse accrue et une meilleure intégration des greffes. Cette approche 3D fournit des informations précieuses pour optimiser la conception des échafaudages, offrant ainsi des recommandations utiles pour améliorer les résultats cliniques en matière de réparation et de régénération osseuse.
This study introduces a three-dimensional (3D) model for investigating the interactions between trabecular bone tissue and bio-resorbable grafts, focusing on their role in bone remodelling processes. Using principles of poroelasticity, the model captures the mechanical behaviour of both bone and graft as porous continua, with their interaction influenced by time-varying mechanical loads and diffusive mechanical stimuli. The stimuli, originating from the strain energy density, propagate through the system, triggering bone formation and graft resorption across distant regions. Numerical simulations reveal the critical impact of load frequency and intensity on remodelling efficiency, with higher values promoting improved bone density and graft integration. This 3D approach provides information on optimizing scaffold design, offering valuable guidance to improve clinical outcomes in bone repair and regeneration procedures.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Remodelage osseux, Interaction os–greffe, Échafaudage poreux résorbable, Lois de diffusion de Fick, Stimulus biomécanique
Rachele Allena 1, 2 ; Daria Scerrato 3, 4 ; Alberto Bersani 3, 4, 5 ; Ivan Giorgio 6, 4, 5

@article{CRMECA_2025__353_G1_479_0, author = {Rachele Allena and Daria Scerrato and Alberto Bersani and Ivan Giorgio}, title = {Simulating bone healing with bio-resorbable scaffolds in a three-dimensional system: insights into graft resorption and integration}, journal = {Comptes Rendus. M\'ecanique}, pages = {479--497}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.291}, language = {en}, }
TY - JOUR AU - Rachele Allena AU - Daria Scerrato AU - Alberto Bersani AU - Ivan Giorgio TI - Simulating bone healing with bio-resorbable scaffolds in a three-dimensional system: insights into graft resorption and integration JO - Comptes Rendus. Mécanique PY - 2025 SP - 479 EP - 497 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.291 LA - en ID - CRMECA_2025__353_G1_479_0 ER -
%0 Journal Article %A Rachele Allena %A Daria Scerrato %A Alberto Bersani %A Ivan Giorgio %T Simulating bone healing with bio-resorbable scaffolds in a three-dimensional system: insights into graft resorption and integration %J Comptes Rendus. Mécanique %D 2025 %P 479-497 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.291 %G en %F CRMECA_2025__353_G1_479_0
Rachele Allena; Daria Scerrato; Alberto Bersani; Ivan Giorgio. Simulating bone healing with bio-resorbable scaffolds in a three-dimensional system: insights into graft resorption and integration. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 479-497. doi : 10.5802/crmeca.291. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.291/
[1] A 2003 update of bone physiology and Wolffs Law for clinicians, Angle Orthod., Volume 74 (2004) no. 1, pp. 3-15 | DOI
[2] Three rules for bone adaptation to mechanical stimuli, Bone, Volume 23 (1998) no. 5, pp. 399-407 | DOI
[3] Biomechanical and molecular regulation of bone remodeling, Annu. Rev. Biomed. Eng., Volume 8 (2006), pp. 455-498 | DOI
[4] Static vs dynamic loads as an influence on bone remodelling, J. Biomech., Volume 17 (1985) no. 12, pp. 897-905 | DOI
[5] Models for drug release of gentamicin in a polylactic acid matrix, Math. Mech. Complex Syst., Volume 8 (2020) no. 4, pp. 307-320 | DOI
[6] Candidates for the mechanosensory system in bone, J. Biomech. Eng., Volume 113 (1991) no. 2, pp. 191-197 | DOI
[7] A model for the bio-mechanical stimulus in bone remodelling as a diffusive signalling agent for bones reconstructed with bio-resorbable grafts, Mech. Res. Commun., Volume 129 (2023), 104094 | DOI
[8] Proposal for the regulatory mechanism of Wolff’s law, J. Orthopaed. Res., Volume 13 (1995) no. 4, pp. 503-512 | DOI
[9] Effects of mechanical forces on maintenance and adaptation of form in trabecular bone, Nature, Volume 405 (2000) no. 6787, pp. 704-706 | DOI
[10] On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon, Biomech. Model. Mechanobiol., Volume 18 (2019) no. 6, pp. 1639-1663 | DOI
[11] Bone poroelasticity, J. Biomech., Volume 32 (1999) no. 3, pp. 217-238 | DOI
[12] Functional adaptation of bone mechanical properties using a diffusive stimulus originated by dynamic loads in bone remodelling, Z. Angew. Math. Phys., Volume 75 (2024), 85 | DOI
[13] Role of mathematical modeling in bone fracture healing, Bone Key Rep., Volume 1 (2012), pp. 221-230 | DOI
[14] Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy, J. Biomech., Volume 20 (1987) no. 8, pp. 785-794 | DOI
[15] A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials, ZAMM - Z. Angew. Math. Mech., Volume 92 (2012) no. 6, pp. 426-444 | DOI | Zbl
[16] Influence of bone microstructure distribution on developed mechanical energy for bone remodeling using a statistical reconstruction method, Math. Mech. Solids, Volume 24 (2019) no. 10, pp. 3027-3041 | DOI | Zbl
[17] The method of virtual power in the mechanics of continuous media, I: second-gradient theory, Math. Mech. Complex Syst., Volume 8 (2020) no. 2, pp. 153-190 | DOI | Zbl
[18] On rotational instability within the nonlinear six-parameter shell theory, Int. J. Solids Struct., Volume 196 (2020), pp. 179-189 | DOI
[19] On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity, Z. Angew. Math. Phys., Volume 71 (2020), pp. 1-16 | DOI
[20] Micro-mechano-morphology-informed continuum damage modeling with intrinsic 2nd gradient (pantographic) grain–grain interactions, Int. J. Solids Struct., Volume 254 (2022), 111880 | DOI
[21] At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola, Math. Mech. Solids, Volume 20 (2015) no. 8, pp. 887-928 | DOI | Zbl
[22] Eshelby’s inclusion theory in light of Noethers theorem, Math. Mech. Complex Syst., Volume 7 (2019) no. 3, pp. 247-285 | DOI
[23] The mechanical role of the periodontal ligament for developing mathematical models in orthodontics, Math. Mech. Complex Syst., Volume 11 (2023) no. 4, pp. 525-539 | DOI | Zbl
[24] Optimization of an architected composite with tailored graded properties, Z. Angew. Math. Phys., Volume 75 (2024) no. 4, 126 | DOI
[25] Equilibria of axial-transversely loaded homogenized duoskelion beams, Math. Mech. Complex Syst., Volume 12 (2024) no. 3, pp. 283-309 | DOI | Zbl
[26] An overview on uncertainty quantification and probabilistic learning on manifolds in multiscale mechanics of materials, Math. Mech. Complex Syst., Volume 11 (2023) no. 1, pp. 87-174 | DOI | Zbl
[27] Sensitivity of a homogeneous and isotropic second-gradient continuum model for particle-based materials with respect to uncertainties, ZAMM - Z. Angew. Math. Mech., Volume 103 (2023) no. 10, e202300068 | DOI | Zbl
[28] A higher-order nonlocal elasticity continuum model for deterministic and stochastic particle-based materials, Z. Angew. Math. Phys., Volume 75 (2024) no. 2, 49 | DOI | Zbl
[29] Cleft alveolar bone graft materials: literature review, Cleft Palate-Craniofac. J., Volume 59 (2022) no. 3, pp. 336-346 | DOI
[30] Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction, Strength Mater., Volume 48 (2016), pp. 573-582 | DOI
[31] A proposal for a novel formulation based on the hyperbolic Cattaneo’s equation to describe the mechano-transduction process occurring in bone remodeling, Symmetry, Volume 14 (2022) no. 11, 2436 | DOI
[32] Influence of mechanical forces on bone: introduction to mechanobiology and mechanical adaptation concept, J. Cell. Immunother., Volume 4 (2018) no. 1, pp. 10-12 | DOI
[33] Dynamic finite element modeling of bone adaptation to cyclic torsional loads, J. Biomech., Volume 47 (2014) no. 10, pp. 2448-2454
[34] Bio-inspired design of a porous resorbable scaffold for bone reconstruction: a preliminary study, Biomimetics, Volume 6 (2021) no. 1, 18 | DOI
[35] Static deformations of a linear elastic porous body filled with an inviscid fluid, J. Elast., Volume 72 (2003), pp. 99-120 | DOI | Zbl
[36] Saint-Venant’s problem for porous linear elastic materials, J. Elast., Volume 47 (1997), pp. 73-81 | DOI | Zbl
[37] Boundary conditions at fluid-permeable interfaces in porous media: a variational approach, Int. J. Solids Struct., Volume 46 (2009) no. 17, pp. 3150-3164 | DOI | Zbl
[38] Ductile void growing in micromorphic GLPD porous plastic solids containing two populations of cavities with different sizes, Math. Mech. Complex Syst., Volume 10 (2023) no. 4, pp. 395-412 | DOI | Zbl
[39] A continuum model for deformable, second gradient porous media partially saturated with compressible fluids, J. Mech. Phys. Solids, Volume 61 (2013) no. 11, pp. 2196-2211 | DOI
[40] Poromechanics, John Wiley & Sons, Chichester, 2004
[41] Nonlinear behavior of trabecular bone at small strains, J. Biomech. Eng., Volume 123 (2001) no. 1, pp. 1-9 | DOI
[42] General theory of three-dimensional consolidation, J. Appl. Phys., Volume 12 (1941) no. 2, pp. 155-164 | DOI | Zbl
[43] Modelling of bone fracture healing: influence of gap size and angiogenesis into bioresorbable bone substitute, Math. Mech. Solids, Volume 22 (2017) no. 10, pp. 1997-2010 | DOI | Zbl
[44] A novel mathematical model for growth of capillaries and nutrient supply with application to prediction of osteophyte onset, ZAMP - Z. Angew. Math. Phys., Volume 67 (2016) no. 4, pp. 1-14 | Zbl
[45] Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., Volume 33 (1962) no. 4, pp. 1482-1498 | DOI | Zbl
[46] Linear elastic materials with voids, J. Elast., Volume 13 (1983) no. 2, pp. 125-147 | DOI | Zbl
[47] Effective computation of SO(3) and O(3) linear representation symmetry classes, Math. Mech. Complex Syst., Volume 7 (2019) no. 3, pp. 203-237 | DOI
[48] Bone remodeling process based on hydrostatic and deviatoric strain mechano-sensing, Biomimetics, Volume 7 (2022) no. 2, 59 | DOI
[49] A bone remodeling model involving two mechanical stimuli originated from shear and normal load conditions within the 3D continuum mechanics framework, Contin. Mech. Thermodyn., Volume 37 (2024) no. 1, 7 | DOI
[50] An orthotropic continuum model with substructure evolution for describing bone remodeling: an interpretation of the primary mechanism behind Wolff’s law, Biomech. Model. Mechanobiol., Volume 22 (2023) no. 6, pp. 2135-2152 | DOI
[51] Damping induced by walking and running, Proc. Eng., Volume 199 (2017), pp. 2826-2831 | DOI
[52] Cellular mechanisms of bone remodeling, Rev. Endocr. Metab. Disord., Volume 11 (2010) no. 4, pp. 219-227 | DOI
[53] Numerical analysis of nonlinear wave propagation in a pantographic sheet, Math. Mech. Complex Syst., Volume 9 (2022) no. 3, pp. 293-310 | DOI
[54] Variational study of a Maxwell–Rayleigh-type finite length model for the preliminary design of a tensegrity chain with a tunable band gap, Mech. Res. Commun., Volume 136 (2024), 104255 | DOI
[55] Comparison between different viewpoints on bulk growth mechanics, Math. Mech. Complex Syst., Volume 11 (2023) no. 2, pp. 287-311 | DOI
[56] An a posteriori approach to the mechanics of volumetric growth, Math. Mech. Complex Syst., Volume 11 (2023) no. 1, pp. 57-86 | DOI | Zbl
[57] Mesoscale DVC analyses and parameter calibration for pantographic block in 3-point flexure, Eur. J. Mech.-A/Solids, Volume 101 (2023), 105063 | DOI | Zbl
[58] Strain-gradient modeling and computation of 3-d printed metamaterials for verifying constitutive parameters determined by asymptotic homogenization, Theoretical Analyses, Computations, and Experiments of Multiscale Materials: A Tribute to Francesco dell’Isola, Springer, Cham, 2022, pp. 343-357 | DOI | Zbl
[59] Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum, Int. J. Solids Struct., Volume 238 (2022), 111386 | DOI
[60] A review of inverse problems for generalized elastic media: formulations, experiments, synthesis, Contin. Mech. Thermodyn., Volume 36 (2024) no. 6, pp. 1413-1453 | DOI
[61] Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics, Z. Angew. Math. Phys., Volume 72 (2021), pp. 1-21 | DOI | Zbl
[62] A non-linear symmetric G1-conforming Bézier finite element formulation for the analysis of Kirchhoff beam assemblies, Comput. Methods Appl. Mech. Eng., Volume 387 (2021), 114176 | DOI | Zbl
[63] A geometrically nonlinear Euler–Bernoulli beam model within strain gradient elasticity with isogeometric analysis and lattice structure applications, Math. Mech. Complex Syst., Volume 8 (2020) no. 4, pp. 345-371 | DOI | Zbl
[64] Torsional loads in the early postoperative period following total hip replacement, J. Orthopaed. Res., Volume 13 (1995) no. 6, pp. 945-955 | DOI
[65] On a hemi-variational formulation for a 2D elasto-plastic-damage strain gradient solid with granular microstructure, Math. Eng., Volume 5 (2022), pp. 1-24 | DOI | Zbl
[66] et al. Validation of a hemi-variational block-based approach to the modelling of common in-plane failures in masonry structures, Sixty Shades of Generalized Continua: Dedicated to the 60th Birthday of Prof. Victor A. Eremeyev, Springer, Cham, 2023, pp. 191-210 | DOI
[67] From approximation of dissipative systems to representative space-time volume elements for metamaterials, Contin. Mech. Thermodyn., Volume 36 (2024) no. 6, pp. 1597-1605 | DOI
[68] A cohesive interface model with degrading friction coefficient, Math. Mech. Complex Syst., Volume 12 (2024) no. 2, pp. 113-133 | DOI | Zbl
Cité par Sources :
Commentaires - Politique