Comptes Rendus
Article de recherche
Critical threshold for crossing a firebreak: mathematical model and fire experiments
[Seuil critique de franchissement d’un coupe-feu : modèle mathématique et expériences de feu]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 673-686.

Firebreaks are commonly used to limit the spread of wildfires towards sensitive areas. However, the risk of extreme fires increases the likelihood that suppression capacities will be exceeded. This study proposes an effective design framework for firebreaks, based on the estimation of the probability of crossing as a function of fire behaviour and weather conditions. A risk matrix is established to support decisions. The probability of crossing is calculated using logistic regression, with data from several bushfire experiments. The results show that a probability greater than 35% indicates a high risk of crossing, while a probability less than 25% indicates a moderate risk. Above 45%, the risk becomes severe. By estimating the risks, we can improve the design and maintenance of firebreaks to make them safer and more effective.

Les coupe-feux sont couramment utilisés pour limiter la progression des feux de végétation vers des zones sensibles. Cependant, le risque de feux extrêmes augmente les chances de dépassement des capacités de suppression. Cette étude propose un cadre de conception efficace pour les coupe-feux, basé sur l’estimation de la probabilité de franchissement en fonction du comportement du feu et des conditions météorologiques. Une matrice de risque est établie pour soutenir les décisions. La probabilité de franchissement est calculée via une régression logistique, avec des données provenant de plusieurs expériences de feu brousse. Les résultats montrent qu’une probabilité supérieure à 35 % indique un risque élevé de franchissement, tandis qu’une probabilité inférieure à 25 % indique un risque modéré. Au-delà de 45 %, le risque devient très élevé. L’estimation des risques permet d’améliorer la conception et l’entretien des coupe-feux pour les rendre plus efficaces et sûrs.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.299
Keywords: Critical probability threshold, Firebreak crossing risk, Bushfire experiments, Firebreak effectiveness, Logistic regression, Risk matrix
Mots-clés : Seuil de probabilité critique, Probabilité de franchissement, Expériences de feu de brousse, Coupe-feu, Régression logistique, Matrice de risque

Akahoua David Vincent Brou 1 ; Tionhonkélé Drissa Soro 2 ; Kouassi Kouassi Serge Yanga 3

1 Université Jean Lorougnon Guédé de Daloa, UFR Environnement, Laboratoire des Sciences et Technologies de l’Environnement, BP 150 Daloa, Côte d’Ivoire
2 Université Félix Houphouët Boigny d’Abidjan, UFR Biosciences, Laboratoire des Milieux Naturels et Conservation de la Biodiversité, 22 BP 582 Abidjan 22, Côte d’Ivoire
3 Université Félix Houphouët Boigny d’Abidjan, UFR Mathématiques et Informatique, Laboratoire de Mécanique et d’Informatique, 22 BP 582 Abidjan 22, Côte d’Ivoire
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_673_0,
     author = {Akahoua David Vincent Brou and Tionhonk\'el\'e Drissa Soro and Kouassi Kouassi Serge Yanga},
     title = {Critical threshold for crossing a firebreak: mathematical model and fire experiments},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {673--686},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.299},
     language = {en},
}
TY  - JOUR
AU  - Akahoua David Vincent Brou
AU  - Tionhonkélé Drissa Soro
AU  - Kouassi Kouassi Serge Yanga
TI  - Critical threshold for crossing a firebreak: mathematical model and fire experiments
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 673
EP  - 686
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.299
LA  - en
ID  - CRMECA_2025__353_G1_673_0
ER  - 
%0 Journal Article
%A Akahoua David Vincent Brou
%A Tionhonkélé Drissa Soro
%A Kouassi Kouassi Serge Yanga
%T Critical threshold for crossing a firebreak: mathematical model and fire experiments
%J Comptes Rendus. Mécanique
%D 2025
%P 673-686
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.299
%G en
%F CRMECA_2025__353_G1_673_0
Akahoua David Vincent Brou; Tionhonkélé Drissa Soro; Kouassi Kouassi Serge Yanga. Critical threshold for crossing a firebreak: mathematical model and fire experiments. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 673-686. doi : 10.5802/crmeca.299. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.299/

[1] A. Syphard; J. Keeley; T. Brennan Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest California, Int. J. Wildland Fire, Volume 20 (2001) no. 6, pp. 764-775 | DOI

[2] D. Bowman; G. Williamson; J. Abatzoglou; C. Kolden; M. Cochrane; A. Smith Human exposure and sensitivity to globally extreme wildfire events, Nature Ecol. Evol., Volume 1 (2017), 0058 | DOI

[3] J. Pausas; J. Keeley Wildfires and global change, Front. Ecol. Environ., Volume 19 (2021), pp. 387-395 | DOI

[4] J. Fayad; G. Accary; F. Morandini et al. Numerical assessment of safe separation distance in the wildland-urban interfaces, Fire, Volume 6 (2023) no. 209, pp. 1-19 | DOI

[5] C. X. Cunningham; G. J. Williamson; D. M. Boswman Increasing frequency and intensity of the most extreme wildfires on Earth, Nat. Ecol. Evol., Volume 8 (2024), pp. 1420-1425 | DOI

[6] S. Sayedi; B. Abbott; B. E. A. Vannière Assessing changes in global fire regimes, Fire Ecol., Volume 18 (2024) no. 20, pp. 1-22

[7] F. Alcasena; A. Ager; J. Bailey; N. Pineda; C. Vega-Garcia Towards a comprehensive wildfire management strategy for Mediterranean areas: Framework development and implementation in Catalonia, Spain, J. Environ. Manag., Volume 231 (2019), pp. 303-320 | DOI

[8] E. Rigolot; P. Fernandes; F. Rego Managing wildfire risk: prevention, suppression, Living with Wildfires: What Science can tell us Discussion Paper 15 (Y. Birot, ed.), European Forest Institute, Joensuu, 2009, pp. 49-52

[9] M. Hand; K. Gebert; J. Liang; D. Calkin; M. Thompson; M. Zhou Economics of Wildfire Management: The Development and Application of Suppression Expenditure Model, Springer Briefs in Fire, Springer, New York, 2014 | DOI

[10] P. Fernandes; A. Pacheco; R. Almeida; J. Claro The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal, Eur. J. For. Res., Volume 135 (2016), pp. 253-262 | DOI

[11] J. Agee; B. Bahro; M. Finney; P. Omi; D. Sapsis; C. Skinner; J. Wagtendonk; C. Weatherspoon The use of shaded fuelbreaks in landscape fire management, Forest Ecol. Manag., Volume 127 (2000), pp. 55-66 | DOI

[12] L. Green Fuelbreaks and other fuel modification for wildland fire control, Agriculture Handbook, USDA Forest Service, Washington, DC, 1977, pp. 1-79

[13] P.-A. Bisgambiglia; J.-L. Rossi; R. Franceschini; F.-J. Chatelon; L. Rossi; T. Marcelli DIMZAL: A software tool to compute acceptable safety distance, Open J. For., Volume 7 (2017), pp. 11-33

[14] J.-L. Rossi; D. Morvan; A. Simeoni; T. Marcelli; F.-J. Chatelon Fuelbreaks: a part of wildfire prevention (2019) http://www.unisdr.org/we/inform/publications/6611 (Accessed 2025-03-31) (Global Assessment Report)

[15] A. A. Wilson Width of firebreak that is necessary to stop grass fires: some field experiments, Can. J. For. Res., Volume 18 (1988), pp. 682-687 | DOI

[16] D. Matsypura; O. Prokopyev; A. Zahar Wildfire fuel management: network-based models and optimization of prescribed burning, Eur. J. Oper. Res., Volume 264 (2018), pp. 774-796 | DOI | MR | Zbl

[17] X. Cui; M. Alam; G. Perry; A. Paterson; S. Wyse; T. Curran Green firebreaks as a management tool for wildfires: Lessons from China, J. Environ. Manag., Volume 233 (2019), pp. 329-336 | DOI

[18] R. Bellefontaine; A. Gaston; Y. Petrucci Aménagement des forêts naturelles des zones tropicales sèches, CAHIER FAO CONSERVATION 32, FAO, Rome, 1997 https://www.fao.org/4/w4442f/w4442f00.htm# (Accessed 2025-03-17 337 p. ISBN 92-5-203970-8)

[19] S. Amansou Gestion des risques: fondements théoriques et analyse critique, Volume 86 (2019) no. 2–3, pp. 265-287 | DOI

[20] B. Barthélemy Gestion des risques: Méthodes d’optimisation globale, éditions des organisations, Paris, 2002

[21] M. Reinhard; S. Beyeler; T. Plüss; G. B. Pezzatti; M. Conedera La gestion des incendies de forêts en Suisse: la vision nationale de l’OFEV, Schweiz. Z. Forstwers, Volume 5 (2019) no. 170, pp. 281-284 | DOI

[22] S. Rahmani; H. Benmessaoud Modélisation et cartographie du risque incendie de forêt dans la partie orientale des Aurès (Algérie), For. Médit., Volume 4 (2019), pp. 435-445

[23] D. Alexandrian Quelles leçons tirer de l’incendie catastrophique de Mati (Grèce) du 23 juillet 2018, For. Médit., Volume 2 (2019), pp. 111-119

[24] E. Rigolot; J.-L. Dupuy; F. Pimont; J. Ruffault Les incendies de forêt catastrophiques, Ann. Mines. Respons. Environ., Volume 98 (2020), pp. 29-35

[25] F. Guerra; C. Napoléone; J. Paoli; M. Moulery L’impact de l’agriculture sur les incendies de forêt et leur propagation dans les régions méditerranéennes françaises, Cah. Méditerr., Volume 102 (2021), pp. 1-18 | DOI

[26] M. Ortega; F. Silva; J. Molina Modeling fuel break effectiveness in southern Spain wildfires, Fire Ecol., Volume 20 (2024) no. 40, pp. 1-14 | DOI

[27] B. Gannon; Y. Wei; E. Belval; J. Young; M. Thompson; C. O’Connor; D. Calkin; C. Dunn A quantitative analysis of fuel break effectiveness drivers in southern california vational forests, Fire, Volume 6 (2023) no. 104, pp. 1-19 | DOI

[28] J. Menaut; L. Abbadie Vegetation, Lamto: Structure, Functioning and Dynamics of a Savanna Ecosystem (L. Abbadie; J. Gignoux; X. Le Roux; M. Lepage, eds.) (Ecological Studies 179), Springer-Verlag, New York, 2006, pp. 63-74 (ISBN 0-287-94844-9) | DOI

[29] L. Gautier Contact forêt-savane en Côte d’Ivoire centrale: Evolution du recouvrement ligneux des savanes de la réserve de Lamto(sud du V baoulé), Candollea, Volume 2 (1990) no. 45, pp. 627-641

[30] F. Lauginie Conservation de la Nature et aires protégées en Côte d’Ivoire, NEI/Hachette et Afrique Nature, Abidjan, 2007, 668 pages

[31] J. Adou; A. Brou; B. Porterie Modeling wildland fire propagation using a semi - physical network model, Case Stud. Fire Saf., Volume 4 (2015), pp. 11-18 | DOI

[32] E. Koo; P. Pagni; S. Stephens; J. Huff; J. Woycheese; D. Weise A simple physical model for forest fire spread rate, Fire Saf. Sci., Volume 8 (2005), pp. 851-862 | DOI

[33] M. Tchiekre; A. Brou; J. Adou Deterministic optimization techniques to calibrate parameters in a wildland fire propagation model, C. R. Méc., Volume 348 (2020), pp. 759-768 | DOI

[34] A. Brou; A. N’dri Evaluation of an optimized bush fire propagation model with large - scale fire experiments, C. R. Méc., Volume 349 (2021), pp. 43-53 | DOI

[35] G. Hankinson A method for calculating the configuration factor between a flame and a receiving target for a wide range of flame geometries relevant to large scale fires, Fire Saf. Sci., Volume 1 (1985), pp. 197-206 | DOI

[36] A. Sullivan; P. Ellis; I. Knight A review of radiant heat flux models used in bushfire applications, Int. J. Wildland Fire, Volume 12 (2003), pp. 101-110 | DOI

[37] B. W. Butler; J. D. Cohen Firefighter safety zones: a theoretical model based on radiative heating, Int. J. Wildland Fire, Volume 2 (1998) no. 8, pp. 73-77 | DOI

[38] J. Rossi; A. Simeoni; B. Moretti; V. Leroy-Cancellieri An analytical model based on radiative heating for the determination of safety distances for wildland fires, Fire Saf. J., Volume 46 (2011), pp. 520-527 | DOI

[39] A. D. V. Brou; K. Kéita Dimensioning a firebreak under the influence of wind and flame burning time: a mathematical model for bushfire control, Fire Technol. (2025), pp. 1-26 | DOI

[40] L. Green; H. Schimke Guides for Fuel-breaks in Sierra Nevada Mixed-Conifer Type, Forest Service US Departement of Agriculture, Washington, DC, 1971

[41] H. Katuwal; D. Calkin; M. Hand Production and efficiency of large wildland fire suppression effort: A stochastic frontier analysis, J. Environ. Manag., Volume 166 (2016), pp. 227-236 | DOI

[42] L. Zarate; J. Arnaldos; J. Casal Establishing safety distances for wildland fires, Fire Saf. J., Volume 43 (2008), pp. 567-575 | DOI

[43] B. Butler Wildland firefighter safety zones: a review of past science and summary of future needs, Int. J. Wildland Fire, Volume 23 (2014), pp. 295-308 | DOI

[44] W. Page; B. Butler An empirically based approach to defining wildland firefighter safety and survival zone separation distances, Int. J. Wildland Fire, Volume 26 (2017), pp. 655-667 | DOI

[45] J. Bouyssou Théorie Générale du Risque, Economica, Paris, 1997

[46] M. Plucinski Fighting flames and forcing firelines: wildfire suppression effectiveness at the fire edge, Curr. For. Rep., Volume 5 (2019), pp. 1-19 | DOI

[47] A. Rytwinski; K. Crowe A simulation-optimization model for selecting the location of fuel-breaks to minimize expected losses from forest fires, Forest Ecol. Manag., Volume 260 (2010) no. 1, pp. 1-11 | DOI

[48] P. Werth; B. Potter; M. Alexander et al. Synthesis of knowledge of extreme fire behavior: volume 2 for fire behavior specialists, researchers, and meteorologists (2016) no. PNW-GTR-891, p. 258 (General Technical Report) | DOI

Cité par Sources :

Commentaires - Politique